what is the slope of the secant line of the function y=−2x2 3x−1 between x=2 and x=6?

Answers

Answer 1

Answer:

Step-by-step explanation:

Step-by-step explanation: y= 12  between x=2 2x2 - 1


Related Questions

Evaluate the integral [(5x3+7x+13) sin( 2 x) dx Answer: You have not attempted this yet

Answers

The integral [(5x3+7x+13) sin( 2 x) dx is -1/2 (5x³ + 7x + 13) cos(2x) + 1/2 (15x² + 7) sin(2x) - 15/8 sin(2x) + C

The integral ∫[(5x³ + 7x + 13)sin(2x)] dx, we can use integration by parts. The integration by parts formula states

∫[u dv] = uv - ∫[v du]

Let's assign u and dv as follows: u = (5x³ + 7x + 13) dv = sin(2x) dx

Taking the derivatives, we have: du = (15x² + 7) dx v = -1/2 cos(2x)

Now we can apply the integration by parts formula:

∫[(5x³ + 7x + 13)sin(2x)] dx = -1/2 (5x³ + 7x + 13) cos(2x) - ∫[-1/2 cos(2x)(15x² + 7) dx]

Simplifying the expression, we get:

∫[(5x³ + 7x + 13)sin(2x)] dx = -1/2 (5x³ + 7x + 13) cos(2x) + 1/2 ∫[cos(2x)(15x² + 7) dx]

Now we need to integrate the second term on the right side. We can again use integration by parts:

Let's assign u and dv as follows: u = (15x² + 7) dv = cos(2x) dx

Taking the derivatives, we have: du = (30x) dx v = 1/2 sin(2x)

Applying the integration by parts formula again, we get:

1/2 ∫[cos(2x)(15x² + 7) dx] = 1/2 (15x² + 7) sin(2x) - 1/2 ∫[sin(2x)(30x) dx]

Simplifying further, we have:

1/2 ∫[cos(2x)(15x^2 + 7) dx] = 1/2 (15x² + 7) sin(2x) - 1/2 ∫[sin(2x)(30x) dx]

Now we have a new integral to evaluate, but notice that it is similar to the original integral. We can use integration by parts once more to evaluate this integral:

Let's assign u and dv as follows:

u = 30x

dv = sin(2x) dx

Taking the derivatives, we have: du = 30 dx v = -1/2 cos(2x)

Applying the integration by parts formula again, we get:

-1/2 ∫[sin(2x)(30x) dx] = -1/2 (30x)(-1/2 cos(2x)) - 1/2 ∫[(-1/2 cos(2x))(30) dx]

-1/2 ∫[sin(2x)(30x) dx] = 15x cos(2x) + 15/4 ∫[cos(2x) dx]

15/4 ∫[cos(2x) dx] = 15/4 (1/2 sin(2x))

∫[(5x^3 + 7x + 13)sin(2x)] dx = -1/2 (5x³ + 7x + 13) cos(2x) + 1/2 (15x² + 7) sin(2x) - 15/8 sin(2x) + C

where C is the constant of integration.

To know more about click here :

https://brainly.com/question/31744185

#SPJ4

how large a sample is needed to calculate a 90onfidence interval for the average time (in minutes) that it takes students to complete the exam

Answers

Therefore, a sample size of at least 26 students is needed to calculate a 90% confidence interval for the average time it takes students to complete the exam.

To calculate a 90% confidence interval for the average time (in minutes) that it takes students to complete the exam, a sample size of at least 26 is needed.

In statistics, a confidence interval (CI) is a range of values that is used to estimate the reliability of a statistical inference based on a sample of data.

Confidence intervals can be used to estimate population parameters like the mean, standard deviation, or proportion of a population.

There are different levels of confidence intervals.

A 90% confidence interval, for example, implies that the true population parameter (in this case, the average time it takes students to complete the exam) falls within the calculated interval with 90% probability.

The formula for calculating the sample size required to determine a confidence interval is:n=\frac{Z^2\sigma^2}{E^2}

Where: n = sample sizeZ = the standard score that corresponds to the desired level of confidenceσ = the population standard deviation E = the maximum allowable error

The value of Z for a 90% confidence interval is 1.645. Assuming a standard deviation of 15 minutes (σ = 15), and a maximum error of 5 minutes (E = 5), t

he minimum sample size can be calculated as follows:$$n=\frac{1.645^2\cdot 15^2}{5^2}=25.7$$

Therefore, a sample size of at least 26 students is needed to calculate a 90% confidence interval for the average time it takes students to complete the exam.

Learn more about standard deviation here:

https://brainly.com/question/32088313

#SPJ11

Solve the following integrals
i. S√xdx ·3x²¹+1 4 ii. dx x2 1 2 iii. Sim² (et – e-t)dt In- 2

Answers

(i)The solution of the integral ∫√x dx * 3x^21+1 is 6x^(43/2) + C.

(ii)The result of the integral ∫(x^2)/(√(1 + 2x)) dx is (-1/3)(1 + 2x)^(3/2) + √(1 + 2x) + C.

(iii) The result of the integral ∫m^2(et – e^(-t)) dt is m^2 * et - m^2 * e^(-t) + C.

i. ∫√x dx

To solve this integral, we can use the power rule for integration:

∫x^n dx = (x^(n+1))/(n+1) + C

Applying the power rule with n = 1/2, we have:

∫√x dx = (2/3)x^(3/2) + C

Multiplying this result by the expression 3x^21+1, we get:

∫√x dx * 3x^21+1 = (2/3)x^(3/2) * 3x^21+1 + C

Simplifying the expression, we have:

2x^(3/2) * x^21 * 3 + C = 6x^(3/2 + 21) + C = 6x^(43/2) + C

Therefore, the result of the integral ∫√x dx * 3x^21+1 is 6x^(43/2) + C.

ii. ∫(x^2)/(√(1 + 2x)) dx

To solve this integral, we can substitute a variable to simplify the expression. Let's substitute u = 1 + 2x. Then, du/dx = 2, which implies dx = (1/2)du.

Using the substitution, we can rewrite the integral as:

∫((u - 1)^2)/(√u) * (1/2) du

Expanding the numerator and simplifying, we get:

(1/2) ∫((u^2 - 2u + 1)/(√u)) du

Splitting the integral into two separate integrals, we have:

(1/2) ∫(u^2/√u) du - (1/2) ∫(2u/√u) du + (1/2) ∫(1/√u) du

Now, we can integrate each term individually:

(1/2) * (2/3)u^(3/2) - (1/2) * (4/3)u^(3/2) + (1/2) * (2√u) + C

Simplifying further, we obtain:

(1/3)u^(3/2) - (2/3)u^(3/2) + √u + C

Combining like terms, we have:

(-1/3)u^(3/2) + √u + C

Replacing u with 1 + 2x, we get the final result:

(-1/3)(1 + 2x)^(3/2) + √(1 + 2x) + C

Therefore, the result of the integral ∫(x^2)/(√(1 + 2x)) dx is (-1/3)(1 + 2x)^(3/2) + √(1 + 2x) + C.

iii. ∫m^2(et – e^(-t)) dt

To solve this integral, we can distribute the m^2 term:

∫m^2 * et dt - ∫m^2 * e^(-t) dt

For the first integral, we can directly integrate m^2 * et with respect to t:

m^2 * ∫et dt = m^2 * et + C1

For the second integral, we can integrate m^2 * e^(-t) with respect to t:

m^2 * ∫e^(-t) dt = m^2

* (-e^(-t)) + C2

Combining the results of the two integrals, we obtain:

m^2 * et - m^2 * e^(-t) + C1 - C2

Since C1 and C2 are arbitrary constants, we can combine them into a single constant C:

m^2 * et - m^2 * e^(-t) + C

Therefore, the result of the integral ∫m^2(et – e^(-t)) dt is m^2 * et - m^2 * e^(-t) + C.

Learn more about "integral ":

https://brainly.com/question/22008756

#SPJ11

1. Determine if the lines with symmetric equations *73 - 972-25 and Item - 24 are the same. x- 4 X+1 + 9 -14 = -3 Explain your answer. 14

Answers

the lines with symmetric equations *73 - 972-25 and Item - 24 are not the same, and so does x- 4 X+1 + 9 -14 = -3.

To determine if the lines with symmetric equations 73 - 972-25 and Item - 24 are the same, we need to convert them into Cartesian equations.

For 73 - 972-25, we have:

x = 7
y = 3

For Item - 24, we have:

x = -2
y = 4

So these two lines have different Cartesian equations and therefore are not the same.

As for the second part of the question, the symmetric equation x-4 X+1 + 9-14 = -3 can be simplified to:

x - 3 = 0

This is the equation of a vertical line passing through the point (3, 0). So it is not the same as the first two lines we considered.

To know more about Cartesian visit:

https://brainly.com/question/27927590

#SPJ11

Find the arc length of the curve below on the given interval by integrating with respect to x. 3 X 3 y = 1 + :[1,4] 4x The length of the curve is (Type an exact answer, using radicals as needed.)

Answers

We need to use numerical methods to approximate the value of the integral.

to find the arc length of the curve defined by the equation 3x³y = 1 + 4x on the interval [1, 4], we can use the arc length formula:

l = ∫√(1 + (dy/dx)²) dx

first, let's solve the given equation for y:

3x³y = 1 + 4x

y = (1 + 4x) / (3x³)

now, let's find dy/dx by differentiating the equation with respect to x:

dy/dx = [d/dx (1 + 4x)] / (3x³) - [(1 + 4x) * d/dx (3x³)] / (3x³)²

simplifying:

dy/dx = 4 / (3x³) - 3(1 + 4x) / (x⁴)

now, let's substitute this expression into the arc length formula:

l = ∫√(1 + (dy/dx)²) dx

l = ∫√(1 + [4 / (3x³) - 3(1 + 4x) / (x⁴)]²) dx

simplifying further:

l = ∫√(1 + [16 / (9x⁶) - 8 / (x³) + 48 / (x⁴) - 24 / x] + [9(1 + 4x)² / (x⁸)]) dx

l = ∫√([9x⁸ + 16x⁵ - 8x² + 48x - 24] / (9x⁶)) dx

to evaluate this integral, we need to find the Derivative of the integrand, but unfortunately, it does not have a simple closed-form solution. using numerical methods such as numerical integration techniques like simpson's rule or the trapezoidal rule, we can approximate the value of the integral and find the arc length of the curve on the given interval [1, 4].

Learn more about Derivative here:

https://brainly.com/question/29020856

#SPJ11

Use the best method available to find the volume.
The region bounded by y=18 - x, y=18 and y=x revolved about the y-axis.
V=_____

Answers

The volume of the region bounded by y=18 - x, y=18 and y=x revolved about the y-axis is (bold) π(18)^3/3 cubic units.

To find the volume of the region bounded by y=18 - x, y=18 and y=x revolved about the y-axis, we can use the method of cylindrical shells.

First, we need to determine the limits of integration. Since we are revolving around the y-axis, our limits of integration will be from y=0 to y=18.

Next, we need to express x in terms of y. From the equation y=18-x, we can solve for x to get x=18-y.

Now, we can set up the integral using the formula for cylindrical shells:

V = ∫[a,b] 2πrh dy

where r is the distance from the y-axis to a point on the curve, and h is the height of a cylindrical shell.

In this case, r is simply x or 18-y, depending on which side of the curve we are on. The height of a cylindrical shell is given by the difference between the upper and lower bounds of y, which is 18-0 = 18.

So, our integral becomes:

V = ∫[0,18] 2πy(18-y) dy

Simplifying and evaluating the integral gives us:

V = π(18)^3/3

Therefore, the volume of the region bounded by y=18 - x, y=18 and y=x revolved about the y-axis is (bold) π(18)^3/3 cubic units.

To know more about volume refer here:

https://brainly.com/question/27549088#

#SPJ11

The double integral over a polar rectangular region can be expressed as:

Answers

The double integral over a polar rectangular region can be expressed by integrating the function over the radial and angular ranges of the region.

To evaluate the double integral over a polar rectangular region, we need to consider the limits of integration for both the radial and angular variables. The region is defined by two values of the radial variable, r1 and r2, and two values of the angular variable, θ1 and θ2.

To calculate the integral, we first integrate the function with respect to the radial variable r, while keeping θ fixed. The limits of integration for r are from r1 to r2. This integration accounts for the "width" of the region in the radial direction.

Next, we integrate the result from the previous step with respect to the angular variable θ. The limits of integration for θ are from θ1 to θ2. This integration accounts for the "angle" or sector of the region.

The order of integration can be interchanged, depending on the nature of the function and the region. If the region is more easily described in terms of the angular variable, we can integrate with respect to θ first and then with respect to r.

Overall, the double integral over a polar rectangular region involves integrating the function over the radial and angular ranges of the region, taking into account both the width and angle of the region.

Learn more about double integral here:

https://brainly.com/question/27360126

#SPJ11




(1 point) Find fæ, fy, and fz. f(x, y, z) = (6x2 + 4y? + 922) = 6x² -0.5 = fx . fy = ini II . fa = . -1 f(x, y, z) = sec (3x + 9yz) = fx fy = E 101 100 1 fz = . 100
(1 point) Find fæ, fy, and fz.

Answers

We have the partial derivatives [tex]f_x = \frac{-3x}{[(6x^{2} + 4y^{2} + 9z^{2})^{3/2}]}, f_y = \frac{-2y}{[(6x^{2} + 4y^{2} + 9z^{2})^{3/2}]}, f_z = \frac{-9z}{[(6x^{2} + 4y^{2} + 9z^{2})^{3/2}]}[/tex]

Here's the step-by-step differentiation process for finding fₓ, fᵧ, and f₂,

To find fₓ:

1. Differentiate the function with respect to x, treating y and z as constants.

  fₓ = d/dx [1/√(6x² + 4y² + 9z²)]

2. Apply the chain rule:

[tex]f_x = \frac{-1}{2}(6x^{2} + 4y^{2} + 9z^{2})^{-1/2} * \frac{d}{dx}(6x^{2} + 4y^{2} + 9z^{2})[/tex]

3. Simplify and differentiate the expression inside the square root:

[tex]f_x = \frac{-1}{2}(6x^{2} + 4y^{2} + 9z^{2})^{-1/2} * 12x[/tex]

4. Combine the terms and simplify further:

[tex]f_x = \frac{-3x}{(6x^{2} + 4y^{2} + 9z^{2})^{-3/2}}[/tex]

To find fᵧ:

1. Differentiate the function with respect to y, treating x and z as constants.

  fᵧ = d/dy [1/√(6x² + 4y² + 9z²)]

2. Apply the chain rule:

[tex]f_x = \frac{-1}{2}(6x^{2} + 4y^{2} + 9z^{2})^{-1/2} * \frac{d}{dx}(6x^{2} + 4y^{2} + 9z^{2})[/tex]

3. Simplify and differentiate the expression inside the square root:

[tex]f_x = \frac{-1}{2}(6x^{2} + 4y^{2} + 9z^{2})^{-1/2} * 8y[/tex]

4. Combine the terms and simplify further:

[tex]f_x = \frac{-2y}{(6x^{2} + 4y^{2} + 9z^{2})^{-3/2}}[/tex]

To find f₂:

1. Differentiate the function with respect to z, treating x and y as constants.

  f₂ = d/dz [1/√(6x² + 4y² + 9z²)]

2. Apply the chain rule:

[tex]f_x = \frac{-1}{2}(6x^{2} + 4y^{2} + 9z^{2})^{-1/2} * \frac{d}{dx}(6x^{2} + 4y^{2} + 9z^{2})[/tex]

3. Simplify and differentiate the expression inside the square root:

[tex]f_x = \frac{-1}{2}(6x^{2} + 4y^{2} + 9z^{2})^{-1/2} * 18z[/tex]

4. Combine the terms and simplify further:

[tex]f_x = \frac{-9y}{(6x^{2} + 4y^{2} + 9z^{2})^{-3/2}}[/tex]

These are the partial derivatives with respect to x, y, and z, respectively, of the given function f(x, y, z).

To know more about partial differentiation, visit,

https://brainly.com/question/31280533

#SPJ4

Complete question - Find fₓ, fᵧ and f₂ if f(x, y, x) = 1/√(6x² + 4y² + 9z²)

The following series
is convergent only when
Select one:
True
False
Question 1 Not yet answered The following series * (2n+1)!-(x+2) Σ 2 Marked out of n = 0 25.00 is convergent only when x=2 Flag question Select one: O True O False

Answers

It is incorrect to say that the series converges only when x=2 since the value of x has no effect on the convergence of the given series. So, False.

The statement "The following series * [tex](2n+1)!-(x+2) Σ 2[/tex]

Marked out of n = 0 25.00 is convergent only when x=2" is false.

What is a series?A series is an addition of infinite numbers. If the addition of an infinite number of terms is performed, then it is referred to as an infinite series. A series is said to be convergent if it sums up to a finite number. If the addition of an infinite number of terms is performed, and it sums up to infinity or negative infinity, it is referred to as a divergent series. The convergence or divergence of the series may be determined using various techniques.

What is a convergent series?

A convergent series is one in which the sum of an infinite number of terms is a finite number. In other words, if the sequence of partial sums converges to a finite number, the infinite series is said to be convergent. If a series is convergent, it implies that the sum of an infinite number of terms is a finite number. Conversely, if a series is divergent, it implies that the sum of an infinite number of terms is infinite or negative infinite.  

The given series * [tex](2n+1)!-(x+2) Σ 2[/tex]Marked out of n = 0 25.00 is convergent only when x=2 is a false statement. The reason why this statement is false is that it has a typo.

The given series * [tex](2n+1)!-(x+2) Σ 2[/tex] Marked out of n = 0 25.00 is a constant series, as it is independent of n. The sum of the series is 50.

Therefore, it is incorrect to say that the series converges only when x=2 since the value of x has no effect on the convergence of the given series.

Learn more about series here:

https://brainly.com/question/32549533


#SPJ11

In circle I, I J = 2 and the area of shaded sector - 4/3 pi. Find the length of JLK.
Express your answer as a fraction times pi

Answers

The length of JLK is equal to 4π/3 units.

How to calculate the area of a sector?

In Mathematics and Geometry, the area of a sector can be calculated by using the following formula:

Area of sector = θπr²/360

Where:

r represents the radius of a circle.θ represents the central angle.

By substituting the given parameters into the area of a sector formula, we have the following;

Area of sector = θπr²/360

4π/3 = θ(π/360) × 2²

4π/3 = 4θπ/360

1,440 = 12θ

θ = 1,440/12

θ = 120°

Arc length JLK = rθ

Arc length JLK = 120° × π/180 × 2

Arc length JLK = 240° × π/180

Arc length JLK = 4π/3 units.

Read more on arc length here: brainly.com/question/28108430

#SPJ1


The price of a chair increases from £258 to £270.90
Determine the percentage change.

Answers

The percentage change is,

⇒ 5%

We have to given that,

The price of a chair increases from £258 to £270.90.

Since we know that,

A figure or ratio that may be stated as a fraction of 100 is a percentage. If we need to calculate a percentage of a number, we should divide it by its entirety and then multiply it by 100. The proportion therefore refers to a component per hundred. Per 100 is what the word percent means. The letter "%" stands for it.

Hence, We get;

the percentage change is,

P = (270.9 - 258)/258 × 100

P = 1290 / 258

P = 5%

Thus,  the percentage change is , 5

Learn more about the percent visit:

https://brainly.com/question/24877689

#SPJ1

Find
the length of the curve. r(t)text( = )sqrt(2)
ti + e^t j + e^(-t)
k, 0<=t<=2
6. [0/1 Points] DETAILS PREVIOUS ANSWERS SCALCET6 13.3.003. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER Find the length of the curve. r(t) = 2ti+e'j+e-'k, 0

Answers

The length of the curve r(t) = 2t i + e^t j + e^(-t) k, where t ranges from 0 to 2, can be expressed as the definite integral ∫[1, e^4] √(4u + 3)/u du.

To find the length of the curve given by the vector-valued function r(t) = 2t i + e^t j + e^(-t) k, where t ranges from 0 to 2, we can use the arc length formula for a curve defined by a vector-valued function:

Length = ∫[a, b] √(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2 dt

In this case, we have:

r(t) = 2t i + e^t j + e^(-t) k

Taking the derivatives of each component with respect to t, we get:

dx/dt = 2

dy/dt = e^t

dz/dt = -e^(-t)

Substituting these derivatives into the arc length formula, we have:

Length = ∫[0, 2] √(2)^2 + (e^t)^2 + (-e^(-t))^2 dt

= ∫[0, 2] √4 + e^(2t) + e^(-2t) dt

= ∫[0, 2] √4 + e^(2t) + 1/(e^(2t)) dt

= ∫[0, 2] √(4e^(2t) + 2 + 1)/(e^(2t)) dt

To solve this integral, we can make a substitution:

Let u = e^(2t)

Then du/dt = 2e^(2t), or du = 2e^(2t) dt

When t = 0, u = e^(20) = 1

When t = 2, u = e^(22) = e^4

The integral becomes:

Length = ∫[1, e^4] √(4u + 2 + 1)/u du

= ∫[1, e^4] √(4u + 3)/u du

This integral can be evaluated using standard integration techniques. However, since it involves a square root and a polynomial, the exact solution may be complicated.

Hence, the length of the curve r(t) = 2t i + e^t j + e^(-t) k, where t ranges from 0 to 2, can be expressed as the definite integral ∫[1, e^4] √(4u + 3)/u du.

for such more question on length

https://brainly.com/question/20339811

#SPJ8

carbon dating uses carbon-14, a radioactive isotope of carbon, to measure the age of an organic artifact. the amount of carbon-14 that remains after time decays according to the differential equation where is the amount of carbon-14 in grams, is time in years, and is the unknown initial amount. solve this differential equation: a biologist has a organic artifact in which 30% of the original c-14 amount remains. how old is this sample? years

Answers

The age of the sample equation is t = (ln|0.3N₀| - C) / (-k).

The age of an organic artifact can be determined by solving the differential equation that describes the decay of carbon-14. In this case, if 30% of the original carbon-14 amount remains in the artifact, we can calculate its age.

The differential equation that describes the decay of carbon-14 is given by:

dN/dt = -kN,

where dN/dt represents the rate of change of carbon-14 amount with respect to time, N is the amount of carbon-14 in grams, t is time in years, and k is the decay constant.

To solve this differential equation, we can separate variables and integrate both sides:

∫ 1/N dN = -∫ k dt.

Integrating, we get:

ln|N| = -kt + C

where C is the constant of integration.

Now, let's consider the given information that 30% of the original carbon-14 amount remains. This implies that the current amount of carbon-14 (N) is equal to 0.3 times the original amount (N₀):

N = 0.3N₀.

Substituting this into the equation, we have:

ln|0.3N₀| = -kt + C.

Solving for t, we find:

t = (ln|0.3N₀| - C) / (-k).

The age of the sample can be calculated using this equation by substituting the known values of ln|0.3N₀|, C, and the decay constant k.

Learn more about differential equation here:

https://brainly.com/question/25731911

#SPJ11

Show work
Suppose I and y are positive numbers such that r2 + 8y = 25. How large can the quantity x + 4y be? (a) 13. (b) 25. (c) 5. (d) 25/2. (e) 11. .

Answers

After calculations the quantity x + 4y can be as be as 5. The correct option is c.

Given that r² + 8y = 25. We need to find out how large the quantity x + 4y can be.

The given equation can be rearranged as r² = 25 - 8y.

We know that (x + 4y)² = x² + 16y² + 8xy

It is given that r² + 8y = 25, substituting the value of r² we get: (x + 4y)² = x² + 16y² + 8xy= (5 - 8y) + 16y² + 8xy (as r² + 8y = 25) On simplification we get:(x + 4y)² = 25 + 8xy - 8y²

Since x and y are positive, we can minimize y to maximize x + 4y.

For this let's consider y = 0.5. Plugging this value into the above equation we get: (x + 2)² = 25 + 4x - 2

Hence, (x + 2)² = 4x + 23 Solving this we get:x² + 4x - 19 = 0

On solving the above equation we get two roots: x = - 4 + √33 and x = - 4 - √33. As x is positive, we will take the larger root. x = - 4 + √33  ≈ 0.6So, we can say that x + 4y < 5 + 4 = 9.

Therefore, the correct option is (c) 5.

To know more about quantity, visit:

https://brainly.com/question/12986460#

#SPJ11

x^2=5x+6 what would be my x values

Answers

The values of x which satisfy the given quadratic equation as required are; 6 and -1.

What are the values of x which satisfy the given quadratic equation?

It follows from the task content that the values of x which satisfy the equation are to be determined.

Given; x² = 5x + 6

x² - 5x - 6 = 0

x² - 6x + x - 6 = 0

x(x - 6) + 1(x - 6) = 0

(x - 6) (x + 1) = 0

x = 6 or x = -1

Therefore, the values of x are 6 and -1.

Read more on quadratic equation;

https://brainly.com/question/1214333

#SPJ1

Find all the local maxima, local minima, and saddle points of the function. f(x,y)=x? - 2xy + 3y? - 10x+10y + 4 2 2 Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. O A. A local maximum occurs at (Type an ordered pair. Use a comma to separate answers as needed.) The local maximum value(s) is/are (Type an exact answer. Use a comma to separate answers as needed.) OB. There are no local maxima. Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. O A. A local minimum occurs at (Type an ordered pair. Use a comma to separate answers as needed.) The local minimum value(s) is/are (Type an exact answer. Use a comma to separate answers as needed.) O B. There are no local minima.

Answers

The function f(x, y) = x^2 - 2xy + 3y^2 - 10x + 10y + 4 does not have any local maxima or local minima.

To find the local maxima, local minima, and saddle points of the function f(x, y), we need to determine the critical points. Critical points occur where the gradient of the function is equal to zero or does not exist.

Taking the partial derivatives of f(x, y) with respect to x and y, we have:

∂f/∂x = 2x - 2y - 10

∂f/∂y = -2x + 6y + 10

Setting both partial derivatives equal to zero and solving the resulting system of equations, we find that x = 1 and y = -1. Therefore, the point (1, -1) is a critical point.

Next, we need to analyze the second-order partial derivatives to determine the nature of the critical point. Calculating the second partial derivatives, we have:

∂²f/∂x² = 2

∂²f/∂y² = 6

∂²f/∂x∂y = -2

Evaluating the discriminant D = (∂²f/∂x²)(∂²f/∂y²) - (∂²f/∂x∂y)² at the critical point (1, -1), we get D = (2)(6) - (-2)² = 20. Since the discriminant is positive, this indicates that the critical point (1, -1) is a saddle point, not a local maximum or local minimum.

Learn more about maxima  here:

https://brainly.com/question/12870695

#SPJ11

The position of an object moving along a line is given by the function s(t) = - 12+2 +60t. Find the average velocity of the object over the following intervals. (a) [1, 9] (c) [1, 7] (b) [1, 8] (d) [1

Answers

The average velocity over the interval [1,6] is: v = s(6) - s(1) / (6 - 1)= [-12(6)²+2(6)+60(6)] - [-12(1)²+2(1)+60(1)] / 5= 510 m/s

The position of an object moving along a line is given by the function s(t) = - 12t+2 +60t. We have to calculate the average velocity of the object over the given intervals.

(a) [1, 9] Average velocity of an object moving along a line is given by:  v = Δs/Δt

Therefore, the average velocity over the interval [1,9] is: v = s(9) - s(1) / (9 - 1)= [-12(9)² +2(9)+60(9)] - [-12(1)²+2(1)+60(1)] / 8= 522 m/s

(b) [1, 8] Therefore, the average velocity over the interval [1,8] is:v = s(8) - s(1) / (8 - 1)= [-12(8)²+2(8)+60(8)] - [-12(1)²+2(1)+60(1)] / 7= 518 m/s

(c) [1, 7] Therefore, the average velocity over the interval [1,7] is:v = s(7) - s(1) / (7 - 1)= [-12(7)²+2(7)+60(7)] - [-12(1)²+2(1)+60(1)] / 6= 514 m/s

Therefore, the average velocity over the interval [1,6] is: v = s(6) - s(1) / (6 - 1)= [-12(6)²+2(6)+60(6)] - [-12(1)²+2(1)+60(1)] / 5= 510 m/s

To know more about velocity click on below link :

https://brainly.com/question/13910788#

#SPJ11








Determine the absolute extremes of the given function over the given interval: f(x) = 2x3 – 6x2 – 180, 1 < x < 4 - The absolute minimum occurs at x = A/ and the minimum value is

Answers

To determine the absolute extremes of the function f(x) = 2x^3 - 6x^2 - 180 over the interval 1 < x < 4, we need to find the critical points and evaluate the function at these points as well as the endpoints of the interval. Answer :  the absolute minimum occurs at x = 2, and the minimum value is -208

1. Find the derivative of f(x):

f'(x) = 6x^2 - 12x

2. Set f'(x) equal to zero to find the critical points:

6x^2 - 12x = 0

Factor out 6x: 6x(x - 2) = 0

Set each factor equal to zero:

6x = 0, which gives x = 0

x - 2 = 0, which gives x = 2

So, the critical points are x = 0 and x = 2.

3. Evaluate the function at the critical points and the endpoints of the interval:

f(1) = 2(1)^3 - 6(1)^2 - 180 = -184

f(4) = 2(4)^3 - 6(4)^2 - 180 = -128

4. Compare the function values at the critical points and endpoints to find the absolute extremes:

The minimum value occurs at x = 2, where f(2) = 2(2)^3 - 6(2)^2 - 180 = -208.

The maximum value occurs at x = 4 (endpoint), where f(4) = -128.

Therefore, the absolute minimum occurs at x = 2, and the minimum value is -208.

Learn more about  function :  brainly.com/question/30721594

#SPJ11

Let C F(x) = L* ** tan(e) at tdt /4 Find (2. F(7/4) b. F(/4) C. F(7/4). Express your answer as a fraction. You must show your work.

Answers

`F(7/4) = [tex]L*ln(cos(e)) + C ......... (1)`and`F(π/4) = L*ln(cos(e))[/tex] + C ........ (2) Without e or L we cannot express this in fraction.

A fraction is a numerical representation of a part-to-whole relationship. It consists of a numerator and a denominator separated by a horizontal line or slash. The numerator represents the number of parts being considered, while the denominator represents the total number of equal parts that make up the whole.

Fractions can be used to express values that are not whole numbers, such as halves (1/2), thirds (1/3), or any other fractional value.

Given function is: `[tex]CF(x) = L*tan(e)[/tex] at tdt/4`To find the values of `F(7/4)` and `[tex]F(\pi /4)[/tex]`.Let's solve the integral of given function.`CF(x) = L*tan(e) at tdt/4` On integration, we get:

`CF(x) = [tex]L*ln(cos(e)) + C`[/tex] Put the limits `[tex]\pi /4[/tex]` and `7/4` in above equation to get the value of `F(7/4)` and `F(π/4)` respectively.

`F(7/4) =[tex]L*ln(cos(e)) + C ......... (1)`[/tex]and`F([tex]\pi /4[/tex]) = L*ln(cos(e)) + C ........ (2)`

We have to express our answer as a fraction but given function does not contain any value of e and L.Hence, it can not be solved without these values.


Learn more about fraction here:

https://brainly.com/question/31193285


#SPJ11

mark has 14 problems wrong on his test.his score was 72% correct. how many problems were on the test

Answers

Answer:

50

Step-by-step explanation:

6. a A certain radioactive isotope has a half-life of 37 years. How many years will it take for 100 grams to decay to 64 grams? (6 pts.)

Answers

Since time cannot be negative, we discard the negative value. Therefore, the number of years it will take for 100 grams to decay to 64 grams is approximately 21.4329 years.

To determine the number of years it will take for a certain radioactive isotope with a half-life of 37 years to decay from 100 grams to 64 grams, we can use the formula for exponential decay:

N(t) = N₀ * (1/2)^(t / T)

Where:

N(t) is the amount of the isotope at time t

N₀ is the initial amount of the isotope

t is the time elapsed

T is the half-life of the isotope

In this case, N₀ = 100 grams and N(t) = 64 grams. We need to solve for t.

64 = 100 * (1/2)^(t / 37)

Divide both sides by 100:

0.64 = (1/2)^(t / 37)

To isolate the exponent, take the logarithm of both sides. We can use either the natural logarithm (ln) or the common logarithm (log base 10). Let's use the natural logarithm:

ln(0.64) = ln((1/2)^(t / 37))

Using the property of logarithms, we can bring the exponent down:

ln(0.64) = (t / 37) * ln(1/2)

Now, solve for t by dividing both sides by ln(1/2):

(t / 37) = ln(0.64) / ln(1/2)

Divide ln(0.64) by ln(1/2):

(t / 37) = -0.5797

Now, multiply both sides by 37 to solve for t:

t = -0.5797 * 37

≈ -21.4329

to know more about exponential visit:

brainly.com/question/29160729

#SPJ11

Consider the initial value problem for the function y, 3y +t y y(1) = 5, t> 1. t (a) Transform the differential equation above for y into a separable equation for u(t) You should get an equation u' f(

Answers

The initial value problem for the function y can be transformed into a separable equation for u(t) as u'(t) = -3u(t) + 2t + 1, where u(t) = y(t) + t. The initial condition u(1) = y(1) + 1 = 5 is also applicable.

To transform the initial value problem for the function y into a separable equation for u(t), we can introduce a new variable u(t) defined as u(t) = y(t) + t.

First, let's differentiate u(t) with respect to t:

u'(t) = y'(t) + 1.

Next, substitute y'(t) with the given differential equation:

u'(t) = -3y(t) - t + 1.

Now, replace y(t) in the equation with u(t) - t:

u'(t) = -3(u(t) - t) - t + 1.

Simplifying the equation further:

u'(t) = -3u(t) + 3t - t + 1,

u'(t) = -3u(t) + 2t + 1.

Thus, we have transformed the initial value problem for y into the separable equation u'(t) = -3u(t) + 2t + 1 for u(t).

To know more about initial value problem refer here:

https://brainly.com/question/30466257#

#SPJ11

Find all the relative extrema and point(s) of inflection for
f(x)=(x+2)(x-4)^3

Answers

the function f(x) = (x + 2)(x - 4)^3 has a relative minimum at x = 2 and a relative maximum at x = 4. There are no points of inflection.

To find the relative extrema and points of inflection, we need to follow these steps:

Step 1: Find the derivative of the function f(x) with respect to x.

f'(x) = (x - 4)^3 + (x + 2)(3(x - 4)^2)

= (x - 4)^3 + 3(x + 2)(x - 4)^2

= (x - 4)^2[(x - 4) + 3(x + 2)]

= (x - 4)^2(4x - 8)

Step 2: Set the derivative equal to zero and solve for x to find the critical points:

(x - 4)^2(4x - 8) = 0

From this equation, we can see that the critical points are x = 4 and x = 2.

Step 3: Determine the nature of the critical points by analyzing the sign changes of the derivative.

a) Plug in a value less than 2 into the derivative:

For example, if we choose x = 0, f'(0) = (-4)^2(4(0) - 8) = 16(-8) = -128 (negative).

This means the derivative is negative to the left of x = 2.

b) Plug in a value between 2 and 4 into the derivative:

For example, if we choose x = 3, f'(3) = (3 - 4)^2(4(3) - 8) = (-1)^2(12 - 8) = 4 (positive).

This means the derivative is positive between x = 2 and x = 4.

c) Plug in a value greater than 4 into the derivative:

For example, if we choose x = 5, f'(5) = (5 - 4)^2(4(5) - 8) = (1)^2(20 - 8) = 12 (positive).

This means the derivative is positive to the right of x = 4.

Step 4: Determine the relative extrema and points of inflection based on the nature of the critical points:

a) Relative Extrema: The critical point x = 2 is a relative minimum since the derivative changes from negative to positive.

The critical point x = 4 is a relative maximum since the derivative changes from positive to negative.

b) Points of Inflection: There are no points of inflection since the second derivative is not involved in the given function.

To know more about relative extrema, visit:
brainly.com/question/13251694

#SPJ11








4. Use the Lagrange multiplier method to find the maximum of the function f(x, y) = 3x + 4y subject to the constraint x + 7y2 =1.

Answers

Using the Lagrange multiplier method, we can find the maximum of the function f(x, y) = 3x + 4y subject to the constraint x + 7y^2 = 1.

To find the maximum of the function, we need to introduce a Lagrange multiplier λ and set up the following system of equations:

∇f = λ∇g

g(x, y) = 0

Here, ∇f represents the gradient of the function f(x, y), and ∇g represents the gradient of the constraint function g(x, y). In this case, the gradients are:

∇f = (3, 4)

∇g = (1, 14y)

Setting up the equations, we have:

3 = λ

4 = 14λy

x + 7y^2 - 1 = 0

From the second equation, we can solve for λ as λ = 4 / (14y). Substituting this value into the first equation, we get 3 = (4 / (14y)). Solving for y, we find y = 2 / 7. Plugging this value into the constraint equation, we can solve for x: x = 1 - 7(2 / 7)^2 = 9 / 14. Therefore, the maximum of the function f(x, y) = 3x + 4y subject to the constraint x + 7y^2 = 1 occurs at the point (9/14, 2/7).

The maximum value of the function f(x, y) = 3x + 4y subject to the constraint x + 7y^2 = 1 is obtained at the point (9/14, 2/7) with a maximum value of (3 * (9/14)) + (4 * (2/7)) = 27/14 + 8/7 = 34/7. The Lagrange multiplier method allows us to find the maximum by incorporating the constraint into the optimization problem using Lagrange multipliers and solving the resulting system of equations.

Learn more about Lagrange multiplier method here: brainly.com/question/30776684

#SPJ11

5. (15 %) Show that the function f(x,y)= x? +3y is differentiable at every point in the plane.

Answers

The partial derivatives exist and are continuous, the function f(x, y) = x² + 3y satisfies the conditions for differentiability at every point in the plane.

To show that a function is differentiable at every point in the plane, we need to demonstrate that it satisfies the conditions for differentiability, which include the existence of partial derivatives and their continuity.

In the case of f(x, y) = x² + 3y, the partial derivatives exist for all values of x and y. The partial derivative with respect to x is given by ∂f/∂x = 2x, and the partial derivative with respect to y is ∂f/∂y = 3. Both partial derivatives are constant functions, which means they are defined and continuous everywhere in the plane.

Since the partial derivatives exist and are continuous, the function f(x, y) = x² + 3y satisfies the conditions for differentiability at every point in the plane. Therefore, we can conclude that the function f(x, y) = x² + 3y is differentiable at every point in the plane.

To know more about partial derivatives, refer here:

https://brainly.com/question/28750217#

#SPJ11

Find the length of the curve. x=2t, y = (2^(3/2)/3)t , 0
≤t≤21

Answers

The length of the given curve is :

2√13 units.

To find the length of the curve, we need to use the formula:
L = ∫√(1+(dy/dx)^2)dx

First, let's find dy/dx:
dy/dx = (dy/dt)/(dx/dt) = [(2^(3/2)/3)]/2 = (2^(1/2)/3)

Next, let's plug this into the formula for L:
L = ∫√(1+(dy/dx)^2)dx
L = ∫√(1+(2^(1/2)/3)^2)dx
L = ∫√(1+4/9)dx
L = ∫√(13/9)dx

Now we can integrate:
L = ∫√(13/9)dx
L = (3/√13)∫√13/3 dx
L = (3/√13)(2/3)(13/3)^(3/2) - (3/√13)(0)
L = 2(13/√13)
L = 2√13

Therefore, the length of the curve is 2√13 units.

To learn more about curves visit : https://brainly.com/question/30452445

#SPJ11

Write down the relation matrix of the abelian group G specified as follows.
G = (2, 1,2, w | 3= + 3y + 42 = w, 6z + 4y + 13z = 7w, 2y - 42 + 4w = 0,92 + 9v + 132 = Aw} . Reduce this matrix using elementary integer row and column operations, and hence write G as a direct
sum of cyclic groups.

Answers

The given abelian group G can be represented by a relation matrix, which can be reduced using elementary integer row and column operations. After reducing the matrix, G can be expressed as a direct sum of cyclic groups.

To obtain the relation matrix of the abelian group G, we write down the given relations in a matrix form:

⎡ 0 3 42 -1 0 0 0 ⎤

⎢ -7 4 0 0 6 0 -7 ⎥

⎢ 0 2 0 4 -1 0 0 ⎥

⎣ 0 0 0 9 0 1 -1 ⎦

Next, we perform elementary integer row and column operations to reduce the matrix. We can apply operations such as swapping rows, multiplying rows by integers, and adding multiples of one row to another. After reducing the matrix, we obtain:

⎡ 1 0 0 0 0 0 1 ⎤

⎢ 0 1 0 0 0 0 0 ⎥

⎢ 0 0 1 0 0 0 0 ⎥

⎣ 0 0 0 1 0 0 1 ⎦

This reduced matrix implies that G is isomorphic to a direct sum of cyclic groups. Each row in the matrix corresponds to a generator of a cyclic group, and the non-zero entries indicate the orders of the generators. In this case, G can be expressed as the direct sum of four cyclic groups: G ≅ ℤ₄ ⊕ ℤ₁ ⊕ ℤ₁ ⊕ ℤ₁.

Therefore, the abelian group G is isomorphic to the direct sum of four cyclic groups, where each cyclic group has the respective orders: 4, 1, 1, and 1.

To learn more about abelian group: -brainly.com/question/15586078#SPJ11

Cost, revenue, and profit are in dollars and x is the number of units. Suppose that the total revenue function is given by R(x) = 47x and that the total cost function is given by C(x) = 90 + 30x + 0.1

Answers

The profit function is P(x) = 17x - 90 - 0.1x.

The given function of total revenue is R(x) = 47x, and the total cost function is C(x) = 90 + 30x + 0.1x.

We can calculate profit as the difference between total revenue and total cost. So, the profit function P(x) can be expressed as follows: P(x) = R(x) - C(x)

Now, substituting R(x) and C(x) in the above equation, we have: P(x) = 47x - (90 + 30x + 0.1x)P(x) = 47x - 90 - 30x - 0.1xP(x) = 17x - 90 - 0.1x

Let's check the expression for profit: When x = 0, P(x) = 17(0) - 90 - 0.1(0) = -90 When x = 100, P(x) = 17(100) - 90 - 0.1(100) = 1610 - 90 - 10 = 1510

Therefore, the profit function is P(x) = 17x - 90 - 0.1x.

To know more about profit function, visit:

https://brainly.com/question/16458378#

#SPJ11

= Let p(x,y) = e e2x+y+8y4 and let F be the gradient of . Find the circulation of F around the circle of radius 2 with center at the point (4, 4). Circulation =

Answers

The line integral of F over the circle is given by: Circulation = ∮ F · dr = ∫ F(x, y) · (dx, dy). since the expression for p(x, y) is not provided, we cannot obtain the exact result of the circulation without further information.

To find the circulation of the vector field F around the circle of radius 2 with the center at (4, 4), we need to evaluate the line integral of F along the boundary of the circle.

Given that F is the gradient of a scalar function p(x, y) = e^(2x+y+8y^4), we can express F as:

F = ∇p = (∂p/∂x, ∂p/∂y)

To calculate the circulation, we integrate F over the curve defined by the circle with radius 2 and center (4, 4). We parameterize the curve as

x = 4 + 2cos(t)

y = 4 + 2sin(t)

where t ranges from 0 to 2π to trace the entire circle.

Substituting these parameterizations into F, we have:

F = (∂p/∂x, ∂p/∂y) = (2e^(2x+y+8y^4), e^(2x+y+8y^4))

The line integral of F over the circle is given by:

Circulation = ∮ F · dr = ∫ F(x, y) · (dx, dy)

Using the parameterizations for x and y, we calculate the differential of the position vector dr as (dx, dy) = (-2sin(t), 2cos(t))dt.

Substituting all the values into the line integral, we get:

Circulation = ∫ F(x, y) · (dx, dy) = ∫ [2e^(2x+y+8y^4) * (-2sin(t)) + e^(2x+y+8y^4) * 2cos(t)] dt

Evaluate this integral from t = 0 to 2π to obtain the circulation of F around the given circle.

Unfortunately, since the expression for p(x, y) is not provided, we cannot obtain the exact result of the circulation without further information.

Learn more about line integral here:

https://brainly.com/question/29850528

#SPJ11

(1 point) Use the divergence theorem to calculate the flux of the vector field F(x, y, z) = x37 + y3] + x3k out of the closed, outward-oriented surface S bounding the solid x2 + y2 < 25, 0 < z< 6. F.

Answers

The divergence theorem can be used to calculate the flux of a vector field F(x, y, z) out of a closed, outward-oriented surface S. This is done by evaluating the triple integral of the divergence of F over the solid region.

The divergence theorem relates the flux of a vector field through a closed surface to the triple integral of the divergence of the field over the solid region it encloses. In this case, the vector field is F(x, y, z) = x^3i + y^3j + x^3k.

To calculate the flux, we need to evaluate the triple integral of the divergence of F over the solid region bounded by the surface S. The divergence of F can be found by taking the partial derivatives of each component with respect to their respective variables: div(F) = ∂/∂x(x^3) + ∂/∂y(y^3) + ∂/∂z(x^3) = 3x^2 + 3y^2.

The triple integral of the divergence of F over the solid region can be written as ∭(3x^2 + 3y^2) dV, where dV represents the volume element.

The solid region is defined by x^2 + y^2 < 25, which represents a disk in the xy-plane with a radius of 5 units. The region extends from z = 0 to z = 6.

By integrating the divergence over the solid region, we can determine the flux of F through the surface S using the divergence theorem.

Learn more about divergence theorem here:

https://brainly.com/question/28155645

#SPJ11

Other Questions
In need of helpThe system below was at equilibrium in a3.5 L container. What change will occurfor the system when the container isexpanded to 12.75 L?2SO(g) + O(g) = 2SO3(g) + 198 kJHint: How many moles of gas are on each side?A. The reactions shifts tothe right (products) toproduce fewer moles ofgas.B. The reactions shifts tothe left (reactants) toproduce more moles ofgas.C. There is no changebecause there are thesame number of moles ofgas on both sides. FILL THE BLANK. All of the following events occur during intramembranous ossification except. calcium and phosphorus. The main minerals bone stores are ______. a company has actual unit demand for four consecutive years of 100, 105, 135, and 150. the respective forecasts were 120 for all four years. which of the following is the resulting mad value that can be computed from this data? what are the three essential diagnostic features of anorexia nervosa Which of the following statements is true? Depreciation should be recorded on the date an asset is purchased Depreciation is the process of allocating the cost of a plant asset to expense in the accounting periods benefiting from disse Depreciation measures the actual decline in market value of an asset o is not necessary to report both the cost and the accumulated depreciation of plant assets in the trancial statements The system of interconnected tubes involved in protein production is called:A. The cytoskeleton.B. Basal bodies.C. Rough Endoplasm.D. Lysosome. Agency Conflicts Firms must provide the right incentives if they are to get to focus on long-run value maximization. Conflicts exist between managers and stockholders and between stockholders (represented by managers) and . Managers' personal goals may compete with shareholder wealth maximization. However, managers can be motivated to act in their stockholders' best interests through (1) reasonable packages, (2) generally receive fixed payments regardless of how well the firm does, while earn higher returns when the firm's earnings are higher. Investments in ventures, that have great payoffs to stockholders if successful but threaten bankruptcy if they fail, create conflicts. In addition, the use of additional [ increases stockholder/debtholder conflicts. Consequently, bondholders attempt to protect themselves by including in bond agreements that limit firms' use of additional and constrain actions. Katrina deposited $500 into a savings account that pays 4% simple interest. Which expression could beused to calculate the interest earned after 3 years?AO (500).04)(3)BO (500)(4)(3)CO (500)(.4)(3)D0 (500) (4)(.03) the actual chemical reaction of combining alloy and mercury is A circular feild has a diameter of 32 meters. A farmer wants to build a fence around the edge of the feild. Each metre of fence will cost 15. 95Work out the total cost of the fence Which of the following is an example of an integrator working to maintain homeostasis?Muscle cells cause you to shiver in an attempt to raise your body temperature if it is too low.The brain processes information about blood calcium levels being too high and determines that calcium levels need to be lowered.The heart begins pumping faster if blood pressure drops too low.Thermoreceptors in your body detect a change in temperature when you walk into an air-conditioned building Find the area of the triangle ABC. Answer must include UNITS. a = 29 ft, b = 43 ft, c= 57 ft" a bribe is complete when the offer is made and the person agrees to receive the bribe. group of answer choices true false The risk-free rate of return is 5.28 percent and the market risk premium is 14.44 percent. What is the expected rate of return on a stock with a beta of 1.65? high or increased compliance occurs in which disease process Late in the nineteenth-century, Sigmund Freud, the "father" of psychoanalysis, wrote about and abused which of the following drugs?A. amphetamineB. methamphetamineC. cocaineD. crackE. none of the above An online retailer samples 155 outgoing shipments each day. On an average day, 1.7% of these outgoing shipments has a defect. Round your answer to 3 decimal places. When preparing a p-chart, what value will represent the upper control limit (UCL) of the chart? Find the exact value of the following expression.tan^-1 (-1) True or False a) Assume fis continuous and non-negative on the interval [a, b]. The limits would be equal asno, for both the lower and upper sums. b) To compute the Riemann sum, the partition size must be of equal width c) The left-hand Riemann sum of a continuous function f(x) is always its right-hand Riemann sum. n n(n+1)(n+2) d) ? - ( min + 1}{2n + 21 ) -2) Find the domain of the vector function F(t) = 9 - t2 i - (ln t)2 j + 1 / t - 1 k. Find the limit limt rightarrow 0 (2t - 100t2 / t i - sin(2t) / t j + (ln(1 - t))k)