Answer:
Step-by-step explanation:
Let's break down the given information step by step to solve the problem:
The sum of three numbers x, y, and z is 165: x + y + z = 165.
When the smallest number x is multiplied by 7, the result is n: 7x = n.
The value n is obtained by subtracting 9 from the largest number y: y - 9 = n.
The value n is also obtained by adding 9 to the third number z: z + 9 = n.
We can use this information to form a system of equations:
Equation 1: x + y + z = 165
Equation 2: 7x = n
Equation 3: y - 9 = n
Equation 4: z + 9 = n
To find the product of the three numbers, we need to determine the values of x, y, z, and n.
First, let's solve for n using Equation 2:
7x = n
Now, let's substitute the value of n into Equations 3 and 4:
Equation 3: y - 9 = 7x
Equation 4: z + 9 = 7x
We can rearrange Equation 3 to express y in terms of x:
y = 7x + 9
Now, we can substitute the value of y in Equation 1:
x + (7x + 9) + z = 165
Simplifying:
8x + z = 156
Now, we have two equations:
Equation 4: z + 9 = 7x
8x + z = 156
We can solve this system of equations to find the values of x and z:
From Equation 4, we have z = 7x - 9.
Substituting z in Equation 8x + z = 156:
8x + (7x - 9) = 156
15x - 9 = 156
15x = 165
x = 11
Substituting x = 11 in Equation 4:
z + 9 = 7(11)
z + 9 = 77
z = 68
Now, we have the values of x = 11, y = 7x + 9 = 7(11) + 9 = 86, and z = 68.
The product of the three numbers x, y, and z is:
Product = x * y * z = 11 * 86 * 68 = 64648.
Therefore, the product of the three numbers is 64648.
Question 1 (11 point) What are the x-intercepts of the function y=(x-5Xx+3)? ( Blank 1- .0) ( 0)
The x-intercepts of the function y = (x-5)(x+3) are 5 and -3.
To find the x-intercepts of the function y = (x-5)(x+3), we need to set y equal to zero and solve for x.
The x-intercepts are the values of x where the graph of the function intersects or crosses the x-axis.
Set y = 0:
0 = (x-5)(x+3)
Apply the zero-product property:
The product of two factors is equal to zero if and only if at least one of the factors is equal to zero.
Therefore, we can set each factor equal to zero and solve for x.
Setting x-5 = 0:
x - 5 = 0
x = 5
Setting x+3 = 0:
x + 3 = 0
x = -3.
The x-intercepts of the function y = (x-5)(x+3) are x = 5 and x = -3.
These are the values of x where the graph of the function crosses the x-axis.
For similar question on function.
https://brainly.com/question/27915724
#SPJ8
Given: AB || DC and m22=m24
Prove: AD || BC
D
4
2
1. AB||DC
2. m22-m24
B
Statements
3
3. 21 and 24 are supplements
4. ?
5. m21+m22-180°
6. 21 and 22 are supplements
7. AD BC
Reasons
1. given
2. given
3. same side interior angles thm.
4. def. of supplementary angles
5. substitution
def. of supplementary angles
converse same side interior angles thm
6.
7.
The missing statement 4 of the two column proof of AD ║ BC is:
Statement 4: m∠1 + m∠4 = 180°
How to complete the two column proof?The complete two column proof to show that AD || BC is as follows:
Statement 1: AD ║ DC
Reason 1: Given
Statement 2: m∠2 = m∠4
Reason 2: Given
Statement 3: ∠1 and ∠3 are supplements
Reason 3: Same side interior angles theorem
Statement 4: m∠1 + m∠4 = 180°
Reason 4: Def. of Supplementary angles
Statement 5: m∠1 + m∠2 = 180°
Reason 5: Substitution
Statement 6: ∠1 and ∠2 are supplements
Reason 6: Def. of Supplementary angles
Statement 7: AD ║ BC
Reason 7: Converse same side interior angles thm
Read more about Two Column Proof at: https://brainly.com/question/1788884
#SPJ1
Determine which postulate or theorem can be used to prove that
ALMN=ANOL.
M
A. SAS
B. ASA
C. AAS
D. SSS
The answer is A. SAS.
If a parallelogram is given and we want to prove that ALMN is congruent to ANOL, we can use the SAS (Side-Angle-Side) postulate.
The SAS postulate states that if two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the two triangles are congruent.
In the case of the parallelogram, we know that AL is congruent to NO (opposite sides of a parallelogram are congruent) and LM is congruent to OL (opposite sides of a parallelogram are congruent). Additionally, angle LAM is congruent to angle LAO (opposite angles of a parallelogram are congruent).
By using the SAS postulate, we have two sides and the included angle that are congruent in both triangles. Therefore, we can conclude that triangle ALMN is congruent to triangle ANOL.
So, the answer is A. SAS.
for similar questions on parallelogram.
https://brainly.com/question/970600
#SPJ8
On a line graph, time is usually represented on the vertical axis.
O True
O False
--
If sin 0=8/17, and tan0<0, what is cos(0)
Use exact values. No decimals.
(0 means theta)
Answer: -15/17
Step-by-step explanation:
sin ∅ = 8/17
If you drew a a line in the 2rd quadrant because tan ∅ <0, which means tan∅ is negative.
Tan∅= sin∅/cos∅
they told you sin∅ is positive which is related to your y.
but cos∅ needs to be negative which is related to x
This happens in the second quadrant x is negative and y is positive.
Now we know which way to draw our line. Label the opposite of the angle 8 and the hypotenuse 17 because sin∅ = 8/17
Use pythagorean to find adjacent.
17² = 8² + a²
225 = a²
a = 15
The adjacent is negative because the adjacent is on the x-axis in the negative direction.
cos ∅ = adj/hyp
cos∅ = -15/17
Answer: -15/17
Step-by-step explanation:
In the first quadrant, all sine, cosine and tan are all positive. In the second quadrant, only sine is positive. Third quadrant, only tangent is positive and fourth quadrant, only cosine is positive.
Therefore, when sine is positive and tan is negative, the angle can only be in quadrant 2. Then draw the triangle. Draw a triangle with the angle from the origin, with the opposite leg from the angle with value of 8 and the hypotenuse of value 17. Since cosine is what the question is asking for, and we know the data given forms an right triangle, the value of the other leg is 15. It is an 8-15-17 special triangle or use the Pythagorean Theorem.
Finally, taking the cosine of the angle from the origin gives -15/17 since it is in quadrant 2.
Which system has the same solution as the system of equations shown?
3x + 2y = -5
2x + 3y = 5
Step-by-step explanation:
To find a system with the same solution as the given system, we can multiply both sides of both equations by a nonzero constant, which will result in a system that is equivalent to the original one.
For example, let's multiply the first equation by 2 and the second equation by 3:
First equation (multiplied by 2):
6x + 4y = -10
Second equation (multiplied by 3):
6x + 9y = 15
The new system of equations is:
6x + 4y = -10
6x + 9y = 15
This system has the same solution as the original system because it's just a scalar multiple of the original system.
Find the probability that a randomly
selected point within the circle falls in the
red-shaded triangle.
12
12
P = [?]
Enter as a decimal rounded to the nearest hundredth.
Enter
Answer:
Area of triangle = (1/2)(12²) = (1/2)(144) = 72
Area of circle = π(12²) = 144π
P(point falls in triangle) = 72/(144π)
= 1/(2π)
= about .16
= about 15.92%
21.7.3 Quiz: Intersecting Lines and Proofs
Which pairs of angles in the figure below are vertical angles?
Check all that apply.
R
P
T
D
B
The pairs of angles that are vertical angles in the figure are R and T.
In the figure provided, vertical angles are formed by the intersection of two lines. Vertical angles are always congruent (equal in measure) to each other.
Looking at the given options:
R and T are vertical angles because they are formed by the intersection of lines.
P and D are not vertical angles. They are adjacent angles formed by the intersection of lines, but they are not directly opposite each other.
Therefore, the pairs of angles that are vertical angles in the figure are:
R and T
for such more question on vertical angles
https://brainly.com/question/1821791
#SPJ8
3^x+3^(4-2x)=1+3^(4-x)
The solution to the equation [tex]3^x + 3^(4-2x) = 1 + 3^(4-x) is x = 2.[/tex]
To solve the equation [tex]3^x + 3^(4-2x) = 1 + 3^(4-x),[/tex] we can simplify the equation and then apply some algebraic techniques to isolate the variable x.
First, let's simplify the equation step by step:
1. Notice that [tex]3^(4-2x)[/tex] can be rewritten as[tex](3^4) / (3^2x)[/tex], using the property of exponentiation.
2. Now the equation becomes 3[tex]^x + (81 / 9^x) = 1 + 3^(4-x).[/tex]
3. We can simplify further by multiplying both sides of the equation by 9^x to eliminate the denominators.
This gives us [tex]3^x * 9^x + 81 = 9^x + 3^(4-x) * 9^x.[/tex]
4. Simplifying the terms, we have [tex](3*9)^x + 81 = 9^x + (3*9)^(4-x).[/tex]
Now we have [tex](27)^x + 81 = 9^x + (27)^(4-x).[/tex]
5. Notice that [tex](27)^x and (27)^(4-x)[/tex] have the same base, so we can set the exponents equal to each other.
This gives us x = 4 - x.
6. Simplifying the equation, we get 2x = 4.
7. Dividing both sides of the equation by 2, we have x = 2.
Therefore, the solution to the equation [tex]3^x + 3^(4-2x) = 1 + 3^(4-x) is x = 2.[/tex]
Using simple language, we simplified the equation step by step and isolated the variable x by setting the exponents equal to each other. The final solution is x = 2.
for more such question on equation visit
https://brainly.com/question/17145398
#SPJ8
x+y+2x=1,x-y+z=-5,3x+y+z=3.
Hence, The solution is:
x = 1
y = - 2
z = 2
Step-by-step explanation:
Combine Like Terms:3x + y = 1
Combine The Equations:x - y + z = 5
3x + y + z = 3
Eliminate Variables by Method of Elimination:x + y = -1
Unite The System of Linear Equations in Two Variables:x + y = -1
3x + y = 1
Obtain the solution:x = 1
y = -2
Substitute into an original equation:1 - (-2) + z = 5
Evaluate the Value of the Variable:z = 2
Solve a Three Variable System:Hence, The Solution is: x = 1, y = -2, z = 2
I hope this helps you!
{y=4x−19.4
y=0.2x−4.2
Answer:The solution of the linear equations y = 4x − 19.4 and y = 0.2x − 4.2 will be (4, -3.4). Then the correct option is A.
What is the solution to the equation?
The allocation of weights to the important variables that produce the calculation's optimum is referred to as a direct consequence.
The equations are given below.
y = 4x − 19.4 ...1
y = 0.2x−4.2 ...2
From equations 1 and 2, then we have
4x - 19.4 = 0.2x - 4.2
3.8x = 15.2
x = 4
Then the value of the variable 'y' will be calculated as,
y = 4 (4) - 19.4
y = 16 - 19.4
y = - 3.4
The solution of the linear equations y = 4x − 19.4 and y = 0.2x − 4.2 will be (4, -3.4). Then the correct option is A.
More about the solution of the equation link is given below.
brainly.com/question/545403
#SPJ1
. Read the paragraph and choose a sentence that describes it best. On the way across the Aegean Sea, Caesar was kidnapped by pirates and held prisoner. He maintained an attitude of superiority throughout his captivity. The pirates demanded a ransom of 20 talents of silver, but he insisted that they ask for 50. After the ransom was paid, Caesar raised a fleet, pursued and captured the pirates, before imprisoning them. He had them crucified on his own authority, as he had promised while in captivity—a promise that the pirates had taken as a joke.
a) Caesar was a vane man who thought 20 talents is too little of a ransom
b) Caesar was very brave and kept to his word to kill the pirates
c) Pirates didn’t believe Caesar will kill them because he was their prisoner
d) The pirates didn’t kill Caesar not only because he was promised to be paid for, but because he made them respect him
The sentence that best describes the paragraph is: "The pirates didn't believe Caesar would kill them because he was their prisoner." So, the correct option is c) Pirates didn’t believe Caesar will kill them because he was their prisoner.
The paragraph recounts the events of Caesar's kidnapping by pirates while crossing the Aegean Sea. Despite being held captive, Caesar maintained an attitude of superiority. The pirates demanded a ransom of 20 talents of silver, but Caesar insisted they ask for 50. This indicates that Caesar saw himself as more valuable than the initial ransom amount suggested by the pirates.
After the ransom was paid, Caesar did not forget the pirates' actions. He raised a fleet, pursued the pirates, and captured them. The sentence implies that the pirates didn't believe Caesar would actually kill them because he was their prisoner and they likely saw his promises as mere jest.
However, Caesar, true to his word, had the pirates crucified on his own authority.
This sequence of events highlights Caesar's determination, strategic thinking, and his ability to command respect even in dire circumstances. Despite being initially taken prisoner, he managed to turn the tables on the pirates, assert his authority, and exact his revenge. So, the correct option is c) Pirates didn’t believe Caesar will kill them because he was their prisoner.
For more such questions on prisoner
https://brainly.com/question/13802253
#SPJ8
1.
A jar of kosher dill spears is filled to the brim with a vinegar based pickling liquid and then
sealed. The base of the cylindrical jar has an area of 45 cm and the height of the jar is
13 cm. When the pickles are opened, all the pickle juice is drained into a measuring cup,
amounting to 160 cm³ of pickle juice. Find the total volume of the dill spears.
of water into cylindrical glass with a diameter of 10.
The total volume of the dill spears is 425 cm³.
To find the total volume of the dill spears, we can subtract the volume of the pickle juice from the volume of the jar.
The jar is in the shape of a cylinder with a base area of 45 cm² and a height of 13 cm. Therefore, the volume of the jar can be calculated using the formula:
Volume of the jar = base area * height
Volume of the jar = 45 cm² * 13 cm
Volume of the jar = 585 cm³
Now, we know that the measuring cup collected 160 cm³ of pickle juice. So, we subtract this volume from the total volume of the jar to find the volume of the dill spears.
Volume of the dill spears = Volume of the jar - Volume of the pickle juice
Volume of the dill spears = 585 cm³ - 160 cm³
Volume of the dill spears = 425 cm³
Therefore, the total volume of the dill spears is 425 cm³.
for such more question on volume
https://brainly.com/question/6204273
#SPJ8
Average rate of change
15 yd
12 yd
20 yd
9 yd
Answer:
1080yd³
Step-by-step explanation:
1/2x12x9=54
54x20=1080
In RST, the measure of T=90°, RT=16, SR=65, and TS= 63. What is the value of
the cosine of S to the nearest hundredth?
Work Shown:
cos(angle) = adjacent/hypotenuse
cos(S) = TS/SR
cos(S) = 63/65
cos(S) = 0.969231
cos(S) = 0.97
Each decimal value is approximate. See the diagram below.
Given: FR = AN
Prove: FA = RN
(Picture involved)
The proof to show that FA = RN should be completed with the following step and reasons;
Step Reason_______
FR = AN Given
RA = RA Reflexive property of Equality
FR + RA = AN + RA Addition Property of Equality
FR + RA = FA Segment Addition Postulate
AN + RA = RN Segment Addition Postulate
FA = RN Transitive Property of Equality
What is the Segment Addition Postulate?In Geometry, the Segment Addition Postulate states that when there are two end points on a line segment (F) and (N), a third point (A) would lie on the line segment (RN), if and only if the magnitude of the distances between the end points satisfy the requirements of these equations;
FR + RA = FA.
AN + RA = RN.
This ultimately implies that, the Segment Addition Postulate is only applicable on a line segment that contains three collinear points.
By applying the Segment Addition Postulate to the given end points, we can logically deduce that line segment FA is equal to line segment RN based on the steps and reasons stated in the two-column proof shown above.
Read more on Segment Addition Postulate here: brainly.com/question/17335225
#SPJ1
I need help with 53 please
Answer:
53)
[tex]f(x) = \frac{7(x - 4)(x + 6)}{(x + 4)(x + 5)} [/tex]
What are all ordered triples of positive integers (x,y,z) whose products is 4 times their sum, If x < y
We can conclude that there are no ordered triples of positive integers (x, y, z) that satisfy the given equation and the condition x < y.
We are given that the product of three positive integers (x, y, z) is equal to four times their sum:
xyz = 4(x + y + z)
Rearranging the equation, we get:
xyz - 4x - 4y - 4z = 0
We can factor out a common factor of 4 from the terms on the right-hand side:
4(xy - x - y - z) = 0
Now, we have two cases to consider:
Case 1: xy - x - y - z = 0
In this case, we can rewrite the equation as:
x(y - 1) - (y + z) = 0
From this equation, we observe that (y + z) must be divisible by (y - 1). Since x < y, the minimum value of (y - 1) is 1, which means (y + z) should also be 1. However, since we are looking for positive integers, this case does not yield any solutions.
Case 2: xy - x - y - z = 4
In this case, we can rewrite the equation as:
x(y - 1) - (y + z) = 4
Similarly, we observe that (y + z) must be divisible by (y - 1), and now (y - 1) can take on a minimum value of 2. We can analyze different possibilities based on this:
If (y - 1) = 2, then (y + z) = 2. Since we are dealing with positive integers, the only possibility is y = 3 and z = -1, which does not satisfy the condition.
If (y - 1) = 3, then (y + z) = 3. The only possibility is y = 4 and z = -1, which also does not satisfy the condition.
If (y - 1) = 4, then (y + z) = 4. The only possibility is y = 5 and z = -1, which does not satisfy the condition.
For more suhc questions on triples visit:
https://brainly.com/question/16036846
#SPJ8
I need help with question 56
Answer:
56) f(x) = c(x - 1)²/(x - 3)
f(0) = c/-3 = 4
c = -12
f(x) = -12(x - 1)²/(x - 3)
50 Points! Multiple choice geometry question. Photo attached. Thank you!
The correct option that would be sufficient to prove the right triangles ∆WXZ and ∆WYX is (A) WZ/WX = XW/YW
How to evaluate the corresponding ratio of the right trianglesThe perpendicular height of the right triangle divides the triangle in two triangles with the same proportions as the original triangle.
Considering the smaller right triangle ∆WXZ and the bigger triangle ∆WYX;
the side WZ of ∆WXZ will correspond to the side WX of ∆WYX and similarly, side XW of ∆WXZ will correspond to the side of ∆WYX
so we can we the proportion as;
WZ/WX = XW/YW
Therefore, the proportion WZ/WX = XW/YW would be sufficient to prove the right triangles ∆WXZ and ∆WYX
Read more about right triangle here:https://brainly.com/question/2920412
#SPJ1
A parabola can be drawn given a focus of ... 100pts
Answer:
The parabola has a vertex at (3, -4), has a p-value of -6 and it opens downwards.
Step-by-step explanation:
The given directrix of the parabola is y = 2, which is a horizontal line.
This means that the parabola is vertical, with a vertical axis of symmetry.
The focus of a parabola is a fixed point located inside the curve. The y-coordinate of the given focus is y = -10. As this is below the directrix, it means that the parabola opens downwards.
The standard form of a vertical parabola is:
[tex]\boxed{(x-h)^2=4p(y-k)}[/tex]
where:
Vertex = (h, k)Focus = (h, k+p)Directrix: y = (k - p)Axis of symmetry: x = hAs the focus is (3, -10), then:
[tex](h, k+p)=(3,-10)[/tex]
[tex]\implies h = 3[/tex]
[tex]\implies k+p=-10[/tex]
As the directrix is y = 2, then:
[tex]k - p=2[/tex]
To find the value of k, sum the equations involved k and p to eliminate p:
[tex]\begin{array}{crcccr}&k &+& p& =& -10\\+&k& -& p& = &2\\\cline{2-6}&2k&&& =& -8\\\cline{2-6}\\\implies &k&&&=&-4\end{array}[/tex]
To find the value of p, substitute the found value of k into one of the equations:
[tex]-4-p=2[/tex]
[tex]p=-4-2[/tex]
[tex]p=-6[/tex]
Therefore, the values of h, k and p are:
h = 3k = -4p = -6The parabola has a vertex at (3, -4), has a p-value of -6 and it opens downwards.
The parabola has a vertex at (3, -4), has a p-value of -6 and it opens downwards.
How to determine the equation and vertex of a parabola?In Mathematics, the standard form of the equation of the directrix lines for any parabola is given by this mathematical equation:
(x - h)² = 4p(y - k).
Where:
h and k are the vertex.p is a point.Since the directrix is horizontal, the axis of symmetry would be vertical. This ultimately implies that, we would have the following parameters;
directrix is y = 2
Focus, (h, k + p) = (3, -10)
Next, we would determine the value of k as follows;
k + p = -10 .......equation 1
k - p = 2 .......equation 2
By solving the equations simultaneously, we have:
2k = -8
k = -4
For the value of p, we have the following from equation 2:
k - p = 2
-4 - p = 2
p = -4 - 2
p = -6
In conclusion, we can logically deduce that the parabola opens downward because the p-value is negative.
Read more on parabola here: brainly.com/question/27814369
#SPJ1
Determine the equation of the ellipse with foci... 100points
The equation of the ellipse with foci (7, 17) and (7, -13), and a major axis of length 34 is[tex](x^2/289) + (y^2/225) = 1.[/tex]
To determine the equation of an ellipse given its foci and the length of its major axis, we need to use the standard form equation for an ellipse. The standard form equation for an ellipse centered at the origin is:
[tex](x^2/a^2) + (y^2/b^2) = 1[/tex]
where 'a' represents the semi-major axis and 'b' represents the semi-minor axis.
In this case, we know that the distance between the foci is equal to 2a, which means a = 34/2 = 17. The foci of the ellipse are given as (7, 17) and (7, -13). The foci lie on the major axis of the ellipse, and since their y-coordinates differ by 30 (17 - (-13) = 30), the length of the major axis is equal to 2b, which means b = 30/2 = 15.
Now we have the values of a and b, so we can substitute them into the standard form equation:
[tex](x^2/17^2) + (y^2/15^2) = 1[/tex]
Simplifying further, we have:
[tex](x^2/289) + (y^2/225) = 1[/tex]
Therefore, the equation of the ellipse with foci (7, 17) and (7, -13), and a major axis of length 34 is:
[tex](x^2/289) + (y^2/225) = 1.[/tex]
This equation represents an ellipse centered at the point (0, 0) with a semi-major axis of length 17 and a semi-minor axis of length 15.
For more question on ellipse visit:
https://brainly.com/question/9702250
#SPJ8
Answer:
The equation of the ellipse with foci (7, 17) and (7, -13), and a major axis of length 34 is
To determine the equation of an ellipse given its foci and the length of its major axis, we need to use the standard form equation for an ellipse. The standard form equation for an ellipse centered at the origin is:
where 'a' represents the semi-major axis and 'b' represents the semi-minor axis.
In this case, we know that the distance between the foci is equal to 2a, which means a = 34/2 = 17. The foci of the ellipse are given as (7, 17) and (7, -13). The foci lie on the major axis of the ellipse, and since their y-coordinates differ by 30 (17 - (-13) = 30), the length of the major axis is equal to 2b, which means b = 30/2 = 15.
Now we have the values of a and b, so we can substitute them into the standard form equation:
Simplifying further, we have:
Therefore, the equation of the ellipse with foci (7, 17) and (7, -13), and a major axis of length 34 is:
This equation represents an ellipse centered at the point (0, 0) with a semi-major axis of length 17 and a semi-minor axis of length 15.
if A-B=2, B-C=7 and A+C=17, then (A+B+C) is equal to
Answer:
A+B+C=28
Step-by-step explanation:
let
A-B=2 -----1 EQUATION
B-C=7-------2
A+C=17------3
FROM 1 AND 2
A-C=9---------4
FROM 2 AND 3
A+B=24 -------5
FROM 3 AND 4
2A=26
A=13 SUBSTITUTING A=13 IN 5
WE GET B=11 SUBSTITUTING IT IN 2
WE GET C=4
NOW
A+B+C=13+11+4=28
1. Suppose that f(x₁,x₂) =3/2x1² + x2² + x₁ - x₂, compute the step length a of the line search method at point x(k)= (1,-1) for the given descent direction PL = (1,0).
The step length 'a' for the line search method at point x(k) = (1, -1) with the descent direction PL = (1, 0) is 0.5.
To compute the step length 'a' using the line search method, we can follow these steps:
1: Calculate the gradient at point x(k).
- Given x(k) = (1, -1)
- Compute the gradient ∇f(x₁,x₂) at x(k):
∇f(x₁,x₂) = (∂f/∂x₁, ∂f/∂x₂)
∂f/∂x₁ = 3x₁ + 1
∂f/∂x₂ = 2x₂ - 1
Substituting x(k) = (1, -1):
∂f/∂x₁ = 3(1) + 1 = 4
∂f/∂x₂ = 2(-1) - 1 = -3
- Gradient at x(k): ∇f(x(k)) = (4, -3)
2: Compute the dot product between the gradient and the descent direction.
- Given PL = (1, 0)
- Dot product: ∇f(x(k)) ⋅ PL = (4)(1) + (-3)(0) = 4
3: Compute the norm of the descent direction.
- Norm of PL: ||PL|| = √(1² + 0²) = √1 = 1
4: Calculate the step length 'a'.
- Step length formula: a = -∇f(x(k)) ⋅ PL / ||PL||²
a = -4 / (1²) = -4 / 1 = -4
5: Take the absolute value of 'a' to ensure a positive step length.
- Absolute value: |a| = |-4| = 4
6: Finalize the step length.
- The step length 'a' is the positive value of |-4|, which is 4.
Therefore, the step length 'a' for the line search method at point x(k) = (1, -1) with the descent direction PL = (1, 0) is 4.
For more such questions on length, click on:
https://brainly.com/question/28322552
#SPJ8
Step 1: –10 + 8x < 6x – 4
Step 2: –10 < –2x – 4
Step 3: –6 < –2x
Step 4: ________
What is the final step in solving the inequality –2(5 – 4x) < 6x – 4?
x < –3
x > –3
x < 3
x > 3
Answer:
x<3
Step-by-step explanation:
[tex] - 2(5 - 4x) < 6x - 4 \\ - 10 + 8x < 6x - 4 \\ 8x - 6x < - 4 + 10 \\ 2x < 6 \\ x < 3[/tex]
answer following question
Answer:
Option (C), 8 am
Step-by-step explanation:
Newton's Law of Cooling is a mathematical model that describes the cooling process of an object. It states that the rate of change of temperature of an object is proportional to the difference between its temperature and the surrounding temperature.
The equation representing Newton's Law of Cooling is:
[tex]\dfrac{dT}{dt} = -k (T_0 - T_A)[/tex]
Where...
"dT/dt" is the rate of change of temperature with respect to time."k" is the cooling constant."T_0" is the temperature of the object."T_a" is the surrounding temperature.After solving the differential equation we get the following function:
[tex]T(t)=T_A+(T_0-T_A)e^{-kt}[/tex]
[tex]\hrulefill[/tex]
Given:
[tex]T_0=98.6 \ \textdegree F \ \text{(This is the average human body temperature)}\\\\T_f=T(t)=80\ \textdegree F \\\\T_A=40 \ \textdegree F \\\\k=0.1947[/tex]
Find:
[tex]T(??)= \ 80 \ \textdegree F[/tex]
Substituting the values into the formula:
[tex]T(t)=T_A+(T_0-T_A)e^{-kt}\\\\\\\Longrightarrow 80=40+(98.6-40)e^{-0.1947t}\\\\\\\Longrightarrow 80=40+58.6e^{-0.1947t}\\\\\\\Longrightarrow 40=58.6e^{-0.1947t}\\\\\\\Longrightarrow 0.682594=e^{-0.1947t}\\\\\\\Longrightarrow \ln(0.682594)=-0.1947t\\\\\\\Longrightarrow t=\dfrac{\ln(0.682594)}{-0.1947} \\\\\\\therefore \boxed{t \approx 2 \ \text{hours}}[/tex]
Thus, we can conclude the time of death was at 8 am.
Please help me I don't understand what to do in order to solve this question
Find x, the angle inscribed in the circle
3.
Your family is planning a road trip stretching from coast to coast for this summer. The route and the time frame are nearly set; now you need to plan out the finances. Your parents have decided that rental of an RV will be cheaper than staying in hotels, but they would like an estimate on the total cost. Can you help them?
a. To rent an RV, the following costs apply: $125 per day, plus 32 cents per mile. Additionally, to drop off the RV on the other side of the country, there is an extra fee of $2,500. Write an equation to describe the total cost of RV rental.
b. Your parents have two options for their road trip plans. The first option stretches over 3500 miles and includes fewer stops but more beautiful scenery. It will take about a week and a half (11 days). The second option stretches over just 3000 miles, but it includes more overnight stops and will therefore take two weeks (14 days). Which of these two options is cheaper?
c. Your little sister really wants to take the two-week trip, but your parents really want to keep the RV rental cost under $5,000. You can compromise by either taking a more direct route (lessening the miles) or by stopping for less overnight stays (lessening the days of the rental). What would the domains be for these two compromises? Justify why you think your domains are correct.
d. Write and solve equations to find how many miles or how many days you would have to eliminate in order to stay under the $5,000 budget. Explain each step as you solve your equations. Finally, make a recommendation to your parents about which compromise you think is best.
a. An equation to describe the total cost of RV rental:
Cost = (125 * d) + (0.32 * m) + 2500
b. Comparing the two costs will determine which option is cheaper.
c. For the more direct route: m ≤ 3500
For fewer overnight stays: d ≤ 14
These domains ensure that we don't exceed the original values for miles and days.
d. I recommend compromising by lessening the number of days of the rental. By reducing the rental period to 11 days, you can stay within the $5,000 budget while still allowing your little sister to take the two-week trip.
a. To write an equation for the total cost of RV rental, we can use the given information. The cost per day is $125, and there is an additional charge of 32 cents per mile. Let's denote the number of days as d and the number of miles as m. The equation for the total cost of RV rental can be written as:
Cost = (125 * d) + (0.32 * m) + 2500
b. To compare the costs of the two options, we need to calculate the total cost for each. Option 1 has 3500 miles and takes 11 days, while option 2 has 3000 miles and takes 14 days. We can substitute these values into the equation from part a to find the total costs for each option. Comparing the two costs will determine which option is cheaper.
c. To compromise and stay within a budget of $5,000, we can adjust either the number of miles or the number of days. For the more direct route, we can reduce the number of miles, and for fewer overnight stays, we can reduce the number of days. The domains for these compromises would be:
For the more direct route: m ≤ 3500
For fewer overnight stays: d ≤ 14
These domains ensure that we don't exceed the original values for miles and days.
d. To find the number of miles or days to eliminate in order to stay under the $5,000 budget, we can set up equations using the total cost equation from part a. Let's denote the reduced number of miles as m' and the reduced number of days as d'. We need to solve the following equation for each compromise:
(125 * d') + (0.32 * m') + 2500 ≤ 5000
By substituting the appropriate values into the equation and solving for m' or d', we can determine how many miles or days need to be eliminated.
Based on the given information, I recommend compromising by lessening the number of days of the rental. By reducing the rental period to 11 days, you can stay within the $5,000 budget while still allowing your little sister to take the two-week trip. This compromise ensures that you don't have to sacrifice too much scenic beauty or make drastic changes to the route.
For more such questions on total cost, click on:
https://brainly.com/question/5168855
#SPJ8
At which points is the function continuous?
The function is continuous in the domain x ≥ 3/4
At which points is the function continuous?Here we have a root function:
f(x) = ⁴√(4x - 3)
This is an even degree root function, so we have problems when the argument is negative.
Then the allowed values (where the function is defined, and thus, continuous) are:
4x - 3 ≥ 0
4x ≥ 3
x ≥ 3/4
There the function is continuous.
Learn more about continuous functions at:
https://brainly.com/question/18102431
#SPJ1