show that the power dissipated by the load resistor is maximum when the resistance of the load resistor is equal to the internal resistance of the battery.

Answers

Answer 1

When the resistance of the load resistor is equal to the internal resistance of the battery, the power dissipated by the load resistor is maximum. This is known as the maximum power transfer theorem.

What is the maximum power transfer theorem?

The maximum power transfer theorem in electrical engineering states that the power produced by a source and delivered to a load is at its highest when the resistance of the load is equal to the internal resistance of the source.

In other words, if the load is equal to the internal resistance of the source, maximum power will be transferred between the source and the load.

According to the theorem, the power transferred to the load is at its maximum when the resistance of the load is equal to the internal resistance of the source. To show that the power dissipated by the load resistor is maximum when the resistance of the load resistor is equal to the internal resistance of the battery, follow the steps mentioned below:

1. Calculate the output voltage V0 and the output current I0 for the load resistor (RL) and the internal resistance of the battery (Ri).

2. Calculate the power dissipated by the load resistor (PL) as a function of RL.

3. In order to find the maximum value of PL, we need to differentiate the above expression with respect to RL and set it to zero. We get RL = Ri.When RL = Ri, the power dissipated by the load resistor is at its maximum.

To know more about power, refer here

https://brainly.com/question/30703855#

#SPJ11


Related Questions

37.37.) pulsars a) spin very rapidly when they're young but slow down due to emitting radiation. b) are the cause of gamma-ray bursts. c) spin very slowly when they're young, and gradually spin faster as they age. d) generally form from 25 solar mass stars. e) emit radio radio in all directions

Answers

Pulsars spin very rapidly when they're young but slow down due to emitting radiation. The correct answer is option a.

What are pulsars?

Pulsars are highly magnetized, rotating neutron stars that emit beams of electromagnetic radiation out of their magnetic poles. These beams can only be observed when they are oriented toward the observer, causing them to appear as pulses of radiation at regular intervals.

Pulsars were first observed in 1967 by Jocelyn Bell Burnell and Antony Hewish while studying interplanetary scintillation. Since their discovery, over 2,000 pulsars have been observed. Pulsars spin very rapidly, with some pulsars rotating hundreds of times per second.

They generally spin faster when they are young and slow down over time due to emitting radiation. Pulsars generally form from massive stars that have gone supernova. They emit radiation in a variety of wavelengths, including radio waves, X-rays, and gamma rays.

Therefore, Pulsars are known to spin very rapidly, with some rotating hundreds of times per second and they gradually slow down due to the loss of energy in the form of radiation.

To know more about Pulsars click here:

https://brainly.com/question/28271936

#SPJ11

an object placed 12 cm from a concave mirror produces a real image 8.0 cm from the mirror. if the object is now moved to a new position 18.0 cm from the mirror, where is the new image located as measured from the mirror?

Answers

The new image is located at a measure of 7.5 cm from the mirror.

Using the mirror formula, 1/f = 1/do + 1/di, where f is the focal length, do is the object distance and di is the image distance.

Let's first find the focal length of the concave mirror. We can use the mirror formula with the given values of object distance and image distance:

[tex]1/f = 1/do + 1/di\\1/f = 1/0.12 + 1/0.08\\1/f = 8.33 + 12.5\\f = 1/20.83\\f = 0.048 m[/tex]

Now we can use the mirror formula again to find the new image distance when the object distance is 18.0 cm:

[tex]1/f = 1/do + 1/di\\1/0.048 = 1/0.18 + 1/di\\di = 0.048 * 0.18 / (0.18 - 0.048)\\di = 0.009936 / 0.132\\di = 0.075 m[/tex]

Therefore, the new image is located at almost 7.5 cm away from the mirror.

To know more about mirror formula, here

brainly.com/question/8512677

#SPJ4

the two very long straight wires carries currents directed as shown. the wires are separated by a distance 4d with i1 two times as large as i2. the magnetic field due to i2 at a distance d above i2 has magnitude bo. what is the total magnetic field at this point due to both wires?

Answers

The total magnetic field at the point above wire 2 is (5/3) times the magnetic field due to wire 2 alone.

To find the total magnetic field at a point, we need to add up the magnetic fields due to each wire separately. The magnetic field due to a long straight wire carrying current will be given by;

B = μ0 × I / (2π × r)

where μ0 is the permeability of free space, I is the current in the wire, and r is the distance from the wire.

Let's first find the magnetic field due to wire 2 at the point above it:

B₂ = μ0 × i₂ / (2π × d)

Given that the magnetic field due to wire 2 at this point has a magnitude of bo, we can write;

bo = μ0 × i₂ / (2π × d)

Rearranging, we get:

i₂ = (2π × d × bo) / μ0

Now, the current in wire 1 is twice as large as the current in wire 2, so:

i₁ = 2 × i₂ = (4π × d × bo) / μ0

The distance between the wires is 4d, so the total magnetic field at the point above wire 2 is given by;

Btotal = B₁ + B₂

where B₁ is the magnetic field due to wire 1 at the point. Using the formula for magnetic field due to a long straight wire, we can write;

B1 = μ0 × i₁ / (2π × 3d)

Substituting the values of i₁ and i₂, we get

B₁ = μ0 × (4π × d × bo) / (2π × 3d) = (2/3) × μ0 × bo

So, the total magnetic field at the point above wire 2 will be;

Btotal = B₁ + B₂ = (2/3) × μ0 × bo + μ0 × i₂ / (2π × d)

Substituting the value of i₂, we get;

Btotal = (2/3) × μ0 × bo + μ0 × (2π × d × bo) / (2π × d)

= (5/3) × μ0 × bo

The total magnetic field at this point will be 5/3.

To know more about magnetic field here

https://brainly.com/question/23096032

#SPJ4

as a rock sinks deeper and deeper into water of constant density, what happens to the buoyant force on it if it started above the surface of the water?

Answers

The buoyant force on the rock will decrease as it sinks deeper and deeper into the water of constant density because the buoyant force is a function of the weight of the water displaced by the rock, and as the rock sinks, it is displacing less and less water.

As the rock sinks, the pressure on it increases and its volume decreases, causing the weight of the water it is displacing to decrease. As a result, the buoyant force on the rock decreases as it sinks deeper and deeper into the water.

know more about  buoyant force here

https://brainly.com/question/21990136#

#SPJ11

How many molecules are in 5 moles of O2?​

Answers

Answer:

One mole of O2 contains 6.022 x 10^23 molecules, therefore, 5 moles of O2 contain 3.011 x 10^24 molecules.

Explanation:

we have 100.0 kg of skim milk at 0% fat and 2.5% protein. how many kg of milk at 2.0% fat and 2.1% protein, and whole milk at 3.5% fat and 1.9% protein must be added to the skim milk to get a final milk that is 1.6% fat and 2.2% protein?

Answers

We have 100.0 kg of skim milk at 0% fat and 2.5% protein. approximately 298.48 kg of milk A and 200.05 kg of whole milk B should be added to the skim milk to get the desired final mixture.

Let x kg of milk with 2.0% fat and 2.1% protein (Milk A) be added to the skim milk. Let y kg of whole milk with 3.5% fat and 1.9% protein (Milk B) be added. We need to find x and y for the final mixture.
1. Fat content equation:
(0.00 * 100) + (0.02 * x) + (0.035 * y) = 0.016 * (100 + x + y)
2. Protein content equation:
(0.025 * 100) + (0.021 * x) + (0.019 * y) = 0.022 * (100 + x + y)
Step 1: Solve the fat content equation for y:
0.02 * x + 0.035 * y = 1.6 + 0.016 * x + 0.016 * y
0.019 * x + 0.02 * y = 1.6
y = (1.6 - 0.019 * x) / 0.02
Step 2: Substitute the value of y in the protein content equation:
0.025 * 100 + 0.021 * x + 0.019 * (1.6 - 0.019 * x) / 0.02 = 0.022 * (100 + x)
2.5 + 0.021 * x + 0.019 * (1.6 - 0.019 * x) = 2.2 + 0.022 * x
Step 3: Solve for x:
0.021 * x - 0.022 * x = 2.5 - 2.2 - 0.019 * 1.6 / 0.02
-0.001 * x = 0.3 - 0.00152
x = (0.3 - 0.00152) / -0.001
x ≈ 298.48
Step 4: Calculate y using the value of x:
y = (1.6 - 0.019 * 298.48) / 0.02
y ≈ 200.05

For more such questions on final mixture.

brainly.com/question/2803514

#SPJ11

As shown in the diagram below, seven forces all with magnitude || = 31 N are applied to an irregularly shaped object. Each force is applied at a different location on the object, indicated by the tail of the arrow; the directions of the forces differ. The distances shown in the diagram have these values: w = 8 m, h = 12 m, and d = 11 m.
For each force, calculate the z component of the torque due to that force, relative to location A (x to the right, y up, z out of the page). Make sure you give the correct sign.
(1) A,1,z = N · m
(2) A,2,z = N · m
(3) A,3,z = N · m
(4) A,4,z = N · m
(5) A,5,z = N · m
(6) A,6,z = N · m
(7) A,7,z = N · m
Relative to location A, what is the z component of the net torque acting on this object?
A,net,z = _____ N · m

Answers

The net torque is given by:mA,net,z = τ1,z + τ2,z + τ3,z + τ4,z + τ5,z + τ6,z + τ7,z = (−22wi − 13wj) N · m.

When answering questions on the Brainly platform, it is important to always be factually accurate, professional, and friendly. You should be concise and avoid providing extraneous amounts of detail. Additionally, you should not ignore any typos or irrelevant parts of the question.

Finally, when answering this specific question, you should use the following terms in your response:As shown in the diagram below, seven forces all with magnitude || = 31 N are applied to an irregularly shaped object. Each force is applied at a different location on the object,

indicated by the tail of the arrow; the directions of the forces differ. The distances shown in the diagram have these values: w = 8 m, h = 12 m, and d = 11 m.(7) A,7,z = N · mA,net,z = _____ N · mTo find the torque about the z-axis (A,7,z), we can use the formula:τ = r x Fwhere τ is the torque,

r is the position vector, and F is the force vector. We can also use the right-hand rule to determine the direction of the torque. If we curl the fingers of our right hand in the direction of r x F, then our thumb will point in the direction of the torque.For each of the seven forces,

we can calculate the torque about the z-axis using the formula above. The position vector for each force is given by the distance from A,7 to the tail of the arrow. The force vector is given by the arrow itself. To simplify the calculations, we can choose a coordinate system such that the x-axis passes through A,7 and is perpendicular to the plane of the diagram.

Then, the y-axis is parallel to the plane of the diagram and passes through A,7, and the z-axis is perpendicular to the plane of the diagram and passes through the center of mass of the object.

With this coordinate system, we can write the position vectors and force vectors in terms of their x, y, and z components.For example, the torque due to force 1 can be written as:τ1,z = (−w/2)i x (−31sin(30°)j) = −15.5wi − 8.5wjwhere i, j, and k are unit vectors in the x, y, and z directions, respectively.

The negative signs indicate that the torque is in the clockwise direction.Using this method, we can find the torque due to each force and then add them up to get the net torque about the z-axis.  

To learn more about : torque

https://brainly.com/question/17512177

#SPJ11

three balls, with masses of 3m, 2m, and m, are fastened to a massless rod of length l as shown. the rotational inertia about the left end of the rod is:

Answers

The required rotational inertia about the left end of the rod is calculated to be 3ML²/2.

A body's inertia is a property that makes it resist efforts to set it in motion or, if it is already moving, to change the speed or direction of it.

The inertia of a substance is a passive quality that only enables it to withstand active agents like forces and torques. To determine the left's spinning inertia,

I = I₁ + I₂ + I₃ = 3 M(0)² + 2M(L/2)² + M(L)² = 3ML²/2

Thus, the required rotational inertia about the left end of the rod is calculated to be 3ML²/2.

To know more about inertia:

https://brainly.com/question/18113232

#SPJ4

a 0.25 kg ball is attached to the end of a string. it is swung in a vertical circle of radius 0.60 m. at the top of the circle its velocity is 6.0 m/s. what is the tension in the string?.

Answers

The tension in the string is 17.45 N. Tension is the force exerted by a string, rope, or cable on an object that is attached to it. In this case, the string is exerting tension on the ball, keeping it in a circular motion.

Mass of the ball, m = 0.25 kg

The radius of the circle, r = 0.60 m

The velocity of the ball at the top of the circle, v = 6.0 m/s

Let's find the tension in the string using the following steps;

At the top of the circle, the gravitational force is acting downwards and the tension force is acting upwards.

So, we can find the net force acting on the ball using the following equation:

Net force,

F = mv²/r

Where m is the mass of the ball

v is the velocity of the ball at the top of the circler is the radius of the circle

Substituting the given values, we get;

F = (0.25 kg) × (6.0 m/s)² / (0.60 m)

F = 15.0 N

Tension force,

T = F + mg

Where g is the acceleration due to gravity.

Substituting the given values, we get;

T = 15.0 N + (0.25 kg) × (9.8 m/s²)

T = 17.45 N

to know more about tension refer here:

https://brainly.com/question/30033702#

#SPJ11

a bowling ball weighing 57.5 n initially moves at a speed of 4.30 m/s. how long must a force of 44.0 n be applied to the ball to stop it?

Answers

Answer:t = 1.27 s

Explanation:

Given

Initial velocity(vi)=4.30m/s

final velocity(vf)=0

F = 44.0 N

M=57.5/9.8(considering g=9.8)

vf = vi + (Fnet / m) * t

t = (m * (vf - vi)) / Fnet

Substituting the given values, we get:

t = (57.5 N / 9.81 m/s^2) * (0 - 4.30 m/s) / (-44.0 N)

t = 1.27 s

A force of 44.0 N must be applied to the bowling ball for 6.98 seconds to stop it.

To determine how long a force of 44.0 N must be applied to a 57.5 N bowling ball moving at an initial velocity of 4.30 m/s to stop it, we can use the formula for the final velocity of an object subjected to a constant force:

final velocity = initial velocity + (force/mass) x time

Since we want to stop the ball, final velocity is 0. We can rearrange  formula to solve for time:

time = (mass x (final velocity - initial velocity))/force

Substituting in given values, we get:

time = (57.5 kg x (0 m/s - 4.30 m/s))/44.0 N = 6.98 seconds

To know more about initial velocity, here

brainly.com/question/9365999

#SPJ4

How much power does the 2200kg truck develop running at the rate of 3.5ms² in 17s

Answers

Answer:

459.65 kilowatts.

Explanation:

This question involves calculating the power developed by a truck in motion, given its mass, rate of acceleration, and time.

The formula for power is:

Power = force x velocity

The formula for force is:

Force = mass x acceleration

We can begin by calculating the force applied on the truck:

Force = mass x acceleration Force = 2200kg x 3.5ms^-2 Force = 7700 N

Next, we need to calculate the velocity of the truck. We can use the following formula:

Velocity = Acceleration x Time

Velocity = 3.5ms^-2 x 17s Velocity = 59.5 m/s

Now we can calculate the power developed by the truck:

Power = Force x Velocity Power = 7700 N x 59.5 m/s Power = 459650 Watts or 459.65 kilowatts

Therefore, the power developed by the 2200kg truck running at a rate of 3.5ms^-2 for 17 seconds is 459.65 kilowatts.

Power developed by the truck at the given rate is 458 kW.

What is meant by power?

Power of an object is defined as the rate of work done by it in unit time.

Here,

Mass of the truck, m = 2200 kg

Acceleration of the truck, a = 3.5 m/s²

Time taken by the truck, t = 17 s

Power of an object is the product of its force and velocity of the object.

Equation for power of the truck is given by,

Power = F x v

Force, F = m x a

F = 2200 x 3.5 = 7700 N

Velocity, v = a x t

v = 3.5 x 17

v = 59.5 m/s

Therefore,

Power = 7700 x 59.5

Power = 458 kW

Hence,

Power developed by the truck at the given rate is 458 kW.

To learn more about power, click:

https://brainly.com/question/19382734

#SPJ2

The distance from Earth to Mars is 54.6 millions kilometers. A helium molecule has a length of approximately 280 picometers. Find how many helium molecules could fit between these two planets.(Tip: research what are picometers)

Answers

Answer:

Approximately 1.95 x 10^20 helium molecules

Explanation:

A picometer is a unit of length equal to one trillionth of a meter, or 10^-12 meters. To find out how many helium molecules could fit between Earth and Mars, we need to first calculate the distance between them in picometers:

54.6 million kilometers = 54.6 x 10^9 meters

54.6 x 10^9 meters = 54.6 x 10^21 picometers (since there are 10^12 picometers in a meter)

Next, we need to calculate how many helium molecules can fit in this distance. We can do this by dividing the distance between Earth and Mars by the length of a helium molecule:

54.6 x 10^21 picometers / 280 picometers per helium molecule

= 1.95 x 10^20 helium molecules

Therefore, approximately 1.95 x 10^20 helium molecules could fit between Earth and Mars, assuming they were lined up end to end without any space between them.

air at 320 k is flowing in a duct at a velocity of (a) 1, (b) 10, (c) 100, and (d) 1000 m/s. determine the temperature that a stationary probe inserted into the duct will read for each case.

Answers

The temperature that a stationary probe inserted into the duct will read for each case is as follows:(a) 320.0005 K(b) 320.0498 K(c) 324.9502 K(d) 815.02 K

The formula to calculate the temperature that a stationary probe inserted into the duct will read for each case is:

T = T0 + (v² / 2Cp)

where,

T0 is the temperature of the air in Kelvin,

v is the velocity of the air in m/s,

Cp is the specific heat capacity of air at a constant pressure of 101.325 kPa.

For each case given, the temperature that the stationary probe will read is as follows:

(a) v = 1 m/sT = 320 K + (1² / 2 * 1005 J/kg.K)T = 320 K + 0.0005 K = 320.0005 K

(b) v = 10 m/sT = 320 K + (10² / 2 * 1005 J/kg.K)T = 320 K + 0.0498 K = 320.0498 K

(c) v = 100 m/sT = 320 K + (100² / 2 * 1005 J/kg.K)T = 320 K + 4.9502 K = 324.9502 K

(d) v = 1000 m/sT = 320 K + (1000² / 2 * 1005 J/kg.K)T = 320 K + 495.02 K = 815.02 K

Thus, the temperature that a stationary probe inserted into the duct will read for each case is as follows:(a) 320.0005 K(b) 320.0498 K(c) 324.9502 K(d) 815.02 K

To know more about temperature click here:

https://brainly.com/question/28923876

#SPJ11

A slope of length 50 m rises to a height of 10 m above the ground. An effort of 100 N is needed to push a 250 N object up the ramp. Calculate: 1. AMA 2. VR 3. efficiency

Answers

1.) The AMA is 2.5

2.) The VR is 5.

3.) The efficiency is 50%.

Given that the object has a weight of 250 N and the effort needed to push it up the ramp is 100 N, we can calculate the AMA as follows:

AMA = Load / Effort

AMA = 250 N / 100 N

AMA = 2.5

Therefore, the AMA is 2.5.

To calculate the VR, we need to find the distance moved by the effort and the distance moved by the load. The distance moved by the effort is the length of the ramp, which is 50 m. The distance moved by the load is the height it is raised, which is 10 m. Therefore, we have:

VR = Distance moved by effort / Distance moved by load

VR = 50 m / 10 m

VR = 5

Therefore, the VR is 5.

To calculate the efficiency, we need to find the work done by the load and the work done by the effort. The work done by the load is:

Work done by load = Load x Distance moved by load

Work done by load = 250 N x 10 m

Work done by load = 2,500 J

The work done by the effort is:

Work done by effort = Effort x Distance moved by effort

Work done by effort = 100 N x 50 m

Work done by effort = 5,000 J

Therefore, the efficiency is:

Efficiency = (Load x Distance moved by load) / (Effort x Distance moved by effort)

Efficiency = (2,500 J) / (5,000 J)

Efficiency = 0.5 or 50%

Therefore, the efficiency is 50%.

For such more question on efficiency:

https://brainly.com/question/29339898

#SPJ11

which of the following best describes how a homeowner using an off-the-grid pv solar system, in the same country as seen in the graph above, can power a home between 9:00 pm and 6:00 am? responses switching to the electrical grid to obtain power switching to the electrical grid to obtain power relying on sources like wind or hydroelectricity in times of darkness relying on sources like wind or hydroelectricity in times of darkness using excess energy from a sunny day stored in batteries for power using excess energy from a sunny day stored in batteries for power burning wood to create heat and light for the home.

Answers

Using excess energy from a sunny day stored in batteries is the best option for off-the-grid PV solar systems at night.

Based on the information given, the best option for a homeowner using an off-the-grid PV solar system to power a home between 9:00 pm and 6:00 am would be to use excess energy from a sunny day stored in batteries for power. This means that the solar panels would generate excess energy during the day which would be stored in batteries to be used at night. This is common practice in off-the-grid solar systems and is an effective way to ensure consistent power supply. Switching to the electrical grid or relying on other sources of energy like wind or hydroelectricity would not be feasible for an off-the-grid solar system. Burning wood for heat and light could be an option but it would not be directly related to the solar system.

Learn more about  pv solar here:

https://brainly.com/question/29548184

#SPJ4

When Andy talked to his cousin in Ohio, she said it was raining. It was snowing at Andy’s house in Pennsylvania. What is the main reason for the difference in precipitation in the two locations?
Group of answer choices

air pressure

humidity

temperature

wind speed

Answers

The main reason for the difference in precipitation in the two locations is due to the difference in temperature. When temperatures are cold enough, the water vapor in the air will condense and form snowflakes.

The temperature in Ohio is likely not cold enough for snow, but the temperature in Pennsylvania is cold enough for the water vapor in the air to turn into snowflakes. The temperature in a given area is determined by a variety of factors, such as air pressure, humidity, and wind speed. Each of these factors can be different in each location, which can lead to a difference in temperature and, ultimately, a difference in precipitation.

Air pressure is the pressure of the atmosphere at a particular location as the higher the air pressure, the warmer the temperature. The humidity determines the amount of water vapor in the air and as the higher the humidity, the more water vapor is in the air and the more likely it is to condense into snow. Wind speed is the speed of the wind at a particular location also the faster the wind, the colder the temperature.

To learn more about temperature click here https://brainly.com/question/24283056

#SPJ1

If an object has constant velocity, zero or non-zero, what do we know about the arrows in a free-body diagram? What do we know about the arrows if the object accelerates? Explain your reasoning.

Answers

As a result, the arrows in the free-body diagram that indicate the forces operating on the object will be balanced, equal in magnitude, and pointing in the opposite direction.

What do the lines in the free body diagram stand for?

Arrows used in free body diagrams to depict the various forces acting on an item. Force is a vector, as was previously stated. As a result, every force on a free body diagram has a value and a direction.

How can you determine whether an item is accelerating or not from a free body diagram?

Newton's rule states that if the net force acting on an object is not zero, then the object's acceleration will also not be zero. Therefore, we will analyse the total force using the free body diagram.

To know more about forces visit:-

https://brainly.com/question/13191643

#SPJ1

how does pressure at the bottom of a body of water relate to the weight of water above each square meter of the bottom surface

Answers

The pressure at the bottom of a body of water is directly proportional to the weight of water above each square meter of the bottom surface.

This relationship is described by the concept of hydrostatic pressure, which is the pressure exerted by a fluid at rest due to the weight of the fluid above it.

In a body of water, the weight of the water above each square meter of the bottom surface creates a force that is transmitted to the bottom as pressure.

This pressure is proportional to the weight of the water and is also distributed equally over each square meter of the bottom surface. According to the equation for hydrostatic pressure, the pressure at a point within a fluid is given by: P = ρgh

where P is the pressure, ρ is the density of the fluid, g is the acceleration due to gravity, and h is the height of the fluid column above the point. In the case of a body of water, the height h is replaced with the depth of the water.

Since the density of water is constant, the pressure at the bottom of a body of water is directly proportional to the depth of the water, which is equivalent to the weight of the water above each square meter of the bottom surface.

As the depth of the water increases, so does the weight of the water above the bottom surface, and hence the pressure at the bottom also increases in direct proportion.

To learn more about pressure here:

https://brainly.com/question/12971272

#SPJ11

stand a meterstick on its end and let it rotate to the floor. if you attach a heavy glob of clay to its upper end and repeat, the time to fall will be

Answers

When you stand a meterstick on its end and let it rotate to the floor, the time it takes to fall is dependent on the moment of inertia.

If you attach a heavy glob of clay to its upper end and repeat the experiment, the time it takes to fall will be longer. The moment of inertia is defined as the resistance of an object to rotational motion. It is dependent on the shape and mass distribution of an object. The clay's addition to the meterstick's upper end changes the mass distribution of the object and increases its moment of inertia. As a result, the object will take longer to fall because it has more resistance to rotational motion.

In summary, the time it takes for a meterstick to fall is dependent on its moment of inertia. Adding a heavy glob of clay to its upper end increases the moment of inertia, resulting in a longer time for it to fall.

Know more about moment of inertia. here:

https://brainly.com/question/14460640

#SPJ11

how is a flywheel constructed to maximize its rotational inertia? how is a flywheel constructed to maximize its rotational inertia? most of the mass is concentrated near a ring half way between the axis and the rim. most of the mass is concentrated near the axis. the mass is uniformly distributed across the radius of the disk. most of the mass is concentrated far from the axis.

Answers

To maximize its rotational inertia, a flywheel must be constructed in a way that "most of the mass is concentrated far from the axis."

Rotational inertia is the measure of a rotating object's resistance to change in its state of rotation. It is affected by the distribution of mass of the object, specifically the distance of the mass from the axis of rotation.

A flywheel is a mechanical device used to store rotational energy. To maximize the flywheel's rotational inertia, the mass of the flywheel should be concentrated as far away from the axis of rotation as possible. This is because the farther the mass is from the axis, the greater its effect on the flywheel's rotational inertia. Therefore, the correct answer to the question is "most of the mass is concentrated far from the axis."

A flywheel is constructed to maximize its rotational inertia by concentrating most of the mass far from the axis. This distribution of mass increases the flywheel's resistance to changes in rotational speed, enhancing its ability to store and release energy efficiently.

Learn more about Rotational inertia here: https://brainly.com/question/29652198

#SPJ11

a proton with kinetic energy 4*10^-6 moves perpendicular to magnetic field of 0.5T what is the radius of circular path​

Answers

Answer:

The radius of the circular path that the proton follows can be calculated using the formula: r = (m*v)/(q*B) where m is the mass of the proton, v is its velocity, q is its charge, and B is the strength of the magnetic field. The mass of the proton is approximately 1.67 x 10^-27 kg, and its charge is 1.6 x 10^-19 C. The velocity of the proton can be calculated using the formula: KE = (1/2)*m*v^2 where KE is the kinetic energy of the proton. Substituting the given value of KE = 4 x 10^-6 J and solving for v, we get: v = sqrt((2*KE)/m) = 1.89 x 10^5 m/s Substituting these values into the formula for the

The radius of the circular path​ is 0.0082 meters or 8.2 millimeters.

What is the magnetic field?

A magnetic field is a region of space around a magnet or a moving electric charge where magnetic forces can be observed. It is a vector field, which means that it has both magnitude and direction at each point in space. Magnetic fields are created by electric currents and the intrinsic magnetic moments of elementary particles such as electrons, protons, and neutrons.

Here in the Question,

The proton moves perpendicular to the magnetic field, so it will experience a magnetic force given by:

F = qvB

Where

q =is the charge of the proton (+1.602 × 10^-19 C),

v =is the velocity of the proton,

B =is the magnetic field strength (0.5 T).

The magnetic force is centripetal in nature, so it provides the necessary force to keep the proton moving in a circular path. The force is given by:

F = mv^2/r

Where

m = is the mass of the proton (1.673 × 10^-27 kg)

r  = is the radius of the circular path.

Setting these two equations equal to each other and solving for r, we get:

mv^2/r = qvB

r = mv/(qB)

Putting the given values, we get:

r = (1.673 × 10^-27 kg) * sqrt((4*10^-6 J) / (2 * 1.602 × 10^-19 C * 0.5 T))

r = 0.0082 meters or 8.2 millimeters (rounded to two significant figures)

Therefore, the radius of the circular path is approximately 8.2 millimeters.

To learn about magnetic flux click:

https://brainly.com/question/30858765

#SPJ2

a dart of mass md is launched straight upward toward a block of mass mb that hangs at rest from a string, as shown in figure 1. immediately before the dart collides with the block, the dart has a speed v0 . the dart then collides with and sticks to the block, and the dart-block system travels upward to a height h before the system comes to rest, as shown in figure 2. what is the change in momentum of the dart-block system immediately before the collision to the instant when the system comes to rest?

Answers

The system comes to rest at height h, its final momentum is 0.

To find the change in momentum of the dart-block system, we need to compare the momentum immediately before the collision to the momentum when the system comes to rest. Let's follow these steps:

1. Calculate the initial momentum of the dart and block before the collision:
Since the block is at rest, its initial momentum is 0. The initial momentum of the dart is given by the product of its mass (md) and velocity (v0). So, initial momentum of the system is md*v0.

2. Determine the combined mass of the dart and block after the collision:
Since the dart sticks to the block, their combined mass is (md + mb).

3. Calculate the final velocity of the dart-block system just after the collision:
Using conservation of momentum, we can write the equation: (md * v0) = (md + mb) * vf, where vf is the final velocity of the system. Solve for vf: vf = (md * v0) / (md + mb).

4. Calculate the change in potential energy when the system rises to a height h:
The change in potential energy is given by ΔPE = (md + mb) * g * h, where g is the acceleration due to gravity.

5. Determine the initial kinetic energy just after the collision:
The initial kinetic energy (KE) is given by (1/2) * (md + mb) * vf^2.

6. Using conservation of energy, set the initial kinetic energy equal to the change in potential energy:
(1/2) * (md + mb) * vf^2 = (md + mb) * g * h.

To Learn More About Momentum :

https://brainly.com/question/1042017

#SPJ11

a table tennis ball has a diameter of 3.80 cm and average density of 0.084 0 g/cm3. What force is required to hold ir completely submerged under water?

Answers

The amount of force necessary to keep it submerged in water is F=0.258N.

The force required to hold a table tennis ball submerged in water is calculated using the formula:

[tex]F =\frac{ (\rho * V * g) }{ A}[/tex]

Where F is the force, ρ is the water's density, V is the ball's volume, g is its gravitational acceleration, and A is its cross-sectional area.

The following formula is used to determine the ball's volume:

[tex]V = \frac{4}{3}*pi*r^3[/tex]

where r is the ball's radius.

The radius of the ball is half its diameter, thus:

[tex]r = 3.8 cm^2[/tex]

Therefore,

[tex]V = \frac{4}{3}*pi *(3.8 cm ^2)3\\V = 0.5222 cm3[/tex]

The cross-sectional area of the ball is calculated using the formula:

[tex]A = \pi * r^2\\\\A = \pi* (\frac{3.8 cm }{ 2})^2\\A = 4.5257 cm^2[/tex]

Substituting the values in the above formula,

[tex]F =\frac{ (0.084 g/cm^3 * 0.5222 cm^3 * 9.8 m/s^2) }{4.5257 cm^2}\\F = 0.258 N[/tex]

Hence, the force needed to keep it submerged in water is 0.258N

learn more about force refer:brainly.com/question/30526425

#SPJ1

a 35.8 l cylinder of ar (g) is connected to an evacuated 1875 l tank so that the gas now is spread over both vessels. if the temperature is held constant and the final pressure is 721 mmhg, what must have been the original gas pressure in the cylinder, in atmospheres?

Answers

The original gas pressure in the 35.8 l cylinder of ar (g) connected to an evacuated 1875 l tank was 50.66 atm.

The combined volume of the cylinder and the tank = 35.8 L + 1875 L = 1910.8 L

The final pressure (Pf) = 721 mmHg

The original gas pressure in the cylinder (Pi) can be calculated using Boyle's Law which states that pressure and volume are inversely proportional to each other at constant temperature.Boyle's law equation:

P₁V₁ = P₂V₂

Where,P₁ = the original pressure in cylinder

V₁ = the volume of the cylinder

P₂ = the final pressure when the cylinder gas is spread over both vessels (i.e., in the cylinder and the tank)

V₂ = the combined volume of the cylinder and tank

The equation can be rearranged to solve for the original pressure in the cylinder (P₁):P₁ = P₂ (V₂ / V₁)

Substituting the values:P₁ = (721 mmHg) (1910.8 L / 35.8 L) = 38411.1 mmHg = 50.66 atm (rounded to two decimal places)Therefore, the original gas pressure in the cylinder was 50.66 atm.

More on gas pressure: https://brainly.com/question/13719976

#SPJ11

when the sun sets, which material would cool down the fastest, assuming they all have the same mass and initial temperature?

Answers

When the sun sets, water would cool down the fastest.

When the sun sets, the material that would cool down the fastest, assuming they all have the same mass and initial temperature, is the one with the lowest specific heat capacity.

Specific heat capacity is the amount of heat required to raise the temperature of one gram of a substance by one degree Celsius.

The specific heat capacity of a substance is a measure of how much energy is required to raise the temperature of a given amount of that substance by one degree Celsius.

It is defined as the amount of heat required to raise the temperature of one unit of mass of the substance by one degree Celsius.

The specific heat capacity of a material varies depending on its chemical makeup.

Metals, for example, have a low specific heat capacity, meaning that they heat up and cool down rapidly.

Conversely, water has a high specific heat capacity, meaning that it heats up and cools down more slowly than metals.

For similar question on Specific heat

https://brainly.com/question/27991746

#SPJ11

pls help me with this question I need it by Monday thanks Q3-4

Answers

The circuit voltages and currents are evaluated according to Ohm's law as follows;

a. 220 V

b. Please find attached the drawing of the circuit showing the required location of the switch, created with MS Word

c. i. 0.4 A

ii. The total current will remain the same

4. a. The over-voltage could burn the lamps

b. i. 6

ii. Please find attached the drawing of the circuit diagram created with MS Word

iii. Please find attached the drawing of the voltmeter in the circuit

5. a. 7 V

b. i. The voltage decreases in L1

ii. The current in the circuit is reduced by the addition of the new lamp

What is Ohm's Law?

Ohm's law describe the relationship between the voltage, resistance, and current in an electric circuit. Ohm's Law states that the current, I, between two points in a conductor in a current carrying circuit, is directly proportional to the voltage, V, between the points.

Mathematically; V ∝ I

V = I·R

R = The resistance of the conductor

3. a. The arrangement of the lamps in parallel indicates that the voltage of the mains 220 V is the voltage across one of the lamps.

b. The location of the switch should be adjacent to the voltage source. Please see the attached drawing created with MS Word

c. i. The connection of the lamps in parallel, and the equivalence of the resistors in each lamp indicates that the current, I, flowing through each lamp can be obtained as follows;

I = 2.4 A/6 = 0.4 A

ii. When the two more lamps are added in parallel, the current through each lamp reduces while the total current in the circuit remain the same

4. a. The reason why Marcus cannot connect the lamps in parallel across the battery is because the voltage of each lamp (2.0 V) are lesser than the voltage of the battery (12 V). If the lamps are connected in parallel, they will draw excess current from the battery and they could burn out.

b. i The number of lamps that can be connected in series and work properly is; 12 V/(2 V/lamp) = 6 Lamps

ii. Please find attached the drawing of the lamps arranged in series created with MS Word

iii. Please find attached the drawing of the voltmeter, that can be used to measure the voltmeter across one lamp

5. a. The voltage across the buzzer is the difference between the voltage across the 9 V and the 2 V lamp, which is 7 V

b. i. The voltage across the circuit component will be shared such that the voltage drop across the L1 will decrease.

ii. According to Ohm's law, the current, I, is inversely proportional to the resistors, R, in a circuit.

I ∝ 1/R

The current in a circuit in series is the same for the components in the circuit, such that as the component increases, Ohm's law indicates that the current in the circuit will decrease.

Learn more on Ohm's law here: https://brainly.com/question/27889378

#SPJ1

how would you expect the solar system and its bodies to be different if the frost line had been beyond the orbit of jupiter?

Answers

If the frost line had extended beyond Jupiter's orbit, the solar system and its components would have been very different. The frost line is the distance in the solar system.

where water and other volatile substances may condense into solid ice, and it is important in planet formation.The outer solar system's gas giants would not have grown as rapidly or as large as they did if there had been a frost line beyond Jupiter. This is because the absence of volatile chemicals in the outer areas would have delayed the process. Furthermore, because they developed closer to the frost line, the inner rocky planets, including Earth, would have had more water and volatile chemicals.a frost line beyond Jupiter would have had profound effects on the formation and composition of the solar system's planets and bodies.

learn more about  solar system   here:

https://brainly.com/question/12075871

#SPJ4

a 960-m wide river flows at 16 m/s as shown in the figure. alice and john have a race in identical boats which each travel 20 m/s in still water. alice leaves point a and steers so that she goes straight to point b directly across and then back to a. john leaves point a and steers up to point c (960 m upstream) and then returns to a. which person arrives back at point a first?

Answers

Alice's 160 seconds is less than John's 266.67 seconds. Therefore, Alice arrives back at point A first.

To determine which person arrives back at point A first, we need to compare their respective travel times. Let's analyze each person's journey.

Alice:
1. Alice goes straight across the river to point B and back to point A.
2. The distance Alice covers is 2 × 960 m = 1920 m (twice the river width, since she goes there and back).
3. Alice's effective speed is the Pythagorean sum of her boat speed and the river speed: √(20² - 16²) = √(400 - 256) = √144 = 12 m/s.
4. Alice's travel time = distance / effective speed = 1920 m / 12 m/s = 160 seconds.

John:
1. John steers up to point C (960 m upstream) and then returns to point A.
2. The distance John covers is also 2 × 960 m = 1920 m (upstream and downstream).
3. When going upstream, John's effective speed is (20 - 16) m/s = 4 m/s. When going downstream, his effective speed is (20 + 16) m/s = 36 m/s.
4. John's travel time upstream = distance / effective speed upstream = 960 m / 4 m/s = 240 seconds.
5. John's travel time downstream = distance / effective speed downstream = 960 m / 36 m/s = 26.67 seconds.
6. John's total travel time = 240 + 26.67 = 266.67 seconds.

Comparing their travel times, Alice's 160 seconds is less than John's 266.67 seconds. Therefore, Alice arrives back at point A first.

More on speed: https://brainly.com/question/11046399

#SPJ11

Determine how much current will pass through resistance R1 if U(BC)=6V, R1=2 ohms, R2=6 ohms, R3=1 ohm, R4=1 ohm

Answers

The current that will pass through resistance R1 if U(BC) = 6V,is 3A when the resistances are as follows: R1=2 ohms, R2=6 ohms, R3=1 ohm, R4=1 ohm.

Given the voltage in the circuit (V) = 6V

The resistance of resistor R1 = 2ohms

The resistance of resistor R2 = 6ohms

The resistance of resistor R3 = 1ohms

The resistance of resistor R4 = 1ohms

As we can see from the diagram given that the resistors R1 and R4 are connected in parallel, which combinedly is connected in series with R2 and then total is connected in parallel with R3.

The current that will pass through resistance R1 can be determined by using Ohm's Law. This law states that the current (I) is equal to the voltage (V) divided by the resistance (R). In this case, the voltage across R1 is the same as the voltage across the circuit (U(BC)), which is 6V. Therefore, the current through R1 is:

I = 6V / 2 ohms = 3A

To learn more about current click here https://brainly.com/question/23323183

#SPJ1

the types of current carried by the headlights of an automobile, and by a plug-in toaster in your kitchen, are group of answer choices none of these. dc and ac, respectively. ac and dc, respectively. both ac. both dc.

Answers

The types of current carried by the headlights of an automobile, and by a plug-in toaster in your kitchen, are AC and DC, respectively.

When we consider the types of current carried by the headlights of an automobile and by a plug-in toaster in your kitchen, the current is different. The headlights of an automobile use DC or Direct Current. The battery is the primary source of energy in a vehicle. As a result, direct current is used. AC or Alternating Current is used by a plug-in toaster in your kitchen.

An electric current that alternates in polarity, switching directions at regular intervals, is known as alternating current. Alternating current (AC) is a type of current that changes direction on a regular basis. It alternates in polarity from a positive charge to a negative charge. The voltage in alternating current increases and decreases periodically.

AC power is generated, transmitted, and distributed because it can be modified with transformers to alter the voltage and current levels. The use of DC or AC is determined by the application. The use of DC or Direct Current is ideal for applications that require constant voltage and current supply, such as lighting and electronic devices.

Alternating current is suitable for power transmission and distribution because it can be easily transformed from one voltage level to another. So, the answer is ac and dc, respectively.

Know more about Alternating current (AC) here:

https://brainly.com/question/30675305

#SPJ11

Other Questions
which of the following are at equilibrium? check all that apply. which of the following are at equilibrium?check all that apply. the concentrations of the reactants and the products do not change. the rate of the reverse reaction does not change. the rate of the forward reaction is twice as fast as the rate of the reverse reaction. what you name? where do you ling you are replacing a hard drive in a customer's computer. which resource should you use to locate the most recent spare part number? select the correct response. 1) Other risk factors beyond what is assessed in the Braden Scale may include co-morbid conditions (e.g., vascular disease, diabetes), increased length of stay, and use of vasopressors (e.g., norepinephrine). TrueFalse Which of the following mutations results in the removal of a section of DNA?TranslocationDuplicationInversionDeletion After pearl harbor, which of these statements most likely describes the attitude of most americans concerning japan? i have no strong feelings when it comes to the japanese. i know nothing about pearl harbor or our foreign policy toward japan. i want our country to avenge its losses and defeat japan. i still have feelings of friendship toward the japanese. the roadside inn is an 80-room motel with only one or two front desk agents on duty at any time. to ensure that no single employee is wholly responsible for accounting for all phases of a transaction, room and room tax charges should be posted by the: which of the following are examples of email personalization? select all that apply. 1 point following up on previous interactions sending unwanted emails out in bulk to a mass recipient list addressing each recipient directly sending messages that match where customers are in the marketing funnel the risk free rate currently have a return of 2.5% and the market risk premium is 6.61%. if a firm has a beta of 1.42, what is its cost of equity? the symptoms of an immune complex reaction are due to the symptoms of an immune complex reaction are due to cytokines. antibodies against self. phagocytosis. destruction of the antigen. complement activation. 20PTS Briefly research fashion trends today. Then answer the following questions in a few short paragraphs.Which trends are currently popular? Describe at least three.Have any of the trends you described come back into fashion from the past? If so, when were they originally popular?If the trends recently came back into fashion, how did they change? which of the following neurotransmitters are known to bind to g-protein coupled receptors? and) epinephrine b) serotonin c) dopamine d) gaba e) all of these how do you multiply 7(b-5)(b-4) step by step question 4 metals are both good heat conductors and good electrical conductors because of the looseness of outer electrons in metal atoms. similarity between thermal and electrical conductive properties. high elasticity of metals. relatively high densities of metals. ability of metals to transfer energy easily. Al continuar la entrevista, que pregunta seria mas apropiada para que la entrevistadora formulara a judit masco? 29) which of the following statements is false? a) a bank's assets are its uses of funds. b) a bank issues liabilities to acquire funds. c) the bank's assets provide the bank with income. d) bank capital is recorded as an asset on the bank balance sheet. the empirical rule assumes that the distribution of data follows a normal curve. group startstrue or false BC = Round your answer to the nearest hundredth. B 35 6 in a randomized controlled trial, sometimes patients agree to receive an intervention but later decide to stop taking the medication. moreover, some patients who were assigned to placebo decide to stop taking the placebo pill and buy the drug on their own (even when they do not know that they are taking a placebo pill). when this happens, researchers typically do the analysis according to the original assignment of the treatment regardless of the actual treatment received. what is the name of this procedure to analyze the data? please help!!! due tomorrow(1 and 3 done)