A plane wave can be expanded in terms of an infinite number of spherical waves using a technique called the multipole expansion. The multipole expansion is a mathematical representation that breaks down a complex wave into simpler components.
The expansion begins by considering a plane wave propagating in a specific direction, such as the z-direction. The plane wave can be expressed as:
E_plane(x, y, z) = E0 * exp(i * k * z)
where E0 represents the amplitude of the wave, k is the wave vector, and i is the imaginary unit.
To expand this plane wave into spherical waves, we use the fact that spherical waves can be described as a superposition of plane waves with different directions.
These plane waves have wave vectors that lie along the radial direction in spherical coordinates.
Using spherical coordinates (r, θ, φ), the expansion of the plane wave into spherical waves can be written as:
E_plane(x, y, z) = Σ An * jn(k * r) * Yn,m(θ, φ)
Here, An represents the expansion coefficients, jn is the spherical Bessel function of order n, and Yn,m represents the spherical harmonics.
The sum extends over all possible values of n and m, which results in an infinite series of terms representing spherical waves with different orders and directions.
Each term represents a specific spherical wave with a particular amplitude (given by An), radial dependence (jn(k * r)), and angular dependence (Yn,m(θ, φ)).
The multipole expansion provides a way to describe the plane wave in terms of an infinite number of spherical waves, accounting for the complexity and spatial variation of the original wave.
learn more about spherical from given link
https://brainly.in/question/50731072
#SPJ11
A 1kg ball is fired from a cannon. What is the change in the
ball’s kinetic energy when it accelerates form 4.0 m/s2
to 8 m/s2?"
The change in the ball's kinetic energy when it accelerates from 4.0 m/s^2 to 8 m/s^2 is 64 Joules.
To calculate the change in kinetic energy, we need to determine the initial and final kinetic energies and then find the difference between them.
The formula for kinetic energy is given by:
Kinetic Energy = [tex](1/2) * mass * velocity^2[/tex]
Mass of the ball (m) = 1 kg
Initial acceleration (a₁) = 4.0 m/s²
Final acceleration (a₂) = 8 m/s²
Let's calculate the initial and final velocities using the formula of accelerated motion:
v = u + a * t
For initial velocity:
u = 0 (assuming the ball starts from rest)
a = a₁ = 4.0 m/s²
t = 1 second (arbitrary time interval for convenience)
Using the formula, we find:
v₁ = u + a₁ * t
v₁ = 0 + 4.0 * 1
v₁ = 4.0 m/s
For final velocity:
u = v₁ (the initial velocity is the final velocity from the previous calculation)
a = a₂ = 8 m/s²
t = 1 second (again, an arbitrary time interval for convenience)
Using the formula, we find:
v₂ = u + a₂ * t
v₂ = 4.0 + 8 * 1
v₂ = 12.0 m/s
Now, we can calculate the initial and final kinetic energies using the formula mentioned earlier:
Initial Kinetic Energy (KE₁) = (1/2) * m * v₁^2
KE₁ = (1/2) * 1 * 4.0^2
KE₁ = 8.0 J (Joules)
Final Kinetic Energy (KE₂) = (1/2) * m * v₂^2
KE₂ = (1/2) * 1 * 12.0^2
KE₂ = 72.0 J (Joules)
Finally, we can determine the change in kinetic energy:
Change in Kinetic Energy = KE₂ - KE₁
Change in Kinetic Energy = 72.0 J - 8.0 J
Change in Kinetic Energy = 64.0 J (Joules)
Therefore, the change in the ball's kinetic energy when it accelerates from 4.0 m/s² to 8 m/s² is 64.0 Joules.
To learn more about kinetic energy click here:
brainly.com/question/999862
#SPJ11
A projectile is fired with an initial speed of 49.6 m/s at an angle of 42.2° above the horizontal on a long flat firing range. Determine the direction of the motion of the projectile 1.20 s after firing
1.20 seconds after firing, the projectile is moving upward and also in the positive x-direction horizontally.
To determine the direction of motion of the projectile 1.20 seconds after firing, we need to consider the vertical and horizontal components of its motion separately.
First, let's analyze the vertical component of motion. The projectile experiences a downward acceleration due to gravity. The vertical velocity of the projectile can be calculated using the formula:
v_vertical = v_initial * sin(theta)
where v_initial is the initial speed of the projectile and theta is the launch angle. Plugging in the given values:
v_vertical = 49.6 m/s * sin(42.2°)
v_vertical ≈ 33.08 m/s (upward)
Since the vertical velocity component is positive, the projectile is moving in an upward direction.
Next, let's consider the horizontal component of motion. The horizontal velocity of the projectile remains constant throughout its flight, assuming no air resistance. The horizontal velocity can be calculated using the formula:
v_horizontal = v_initial * cos(theta)
Plugging in the given values:
v_horizontal = 49.6 m/s * cos(42.2°)
v_horizontal ≈ 37.81 m/s (horizontal)
The horizontal velocity component is positive, indicating motion in the positive x-direction.
Therefore, 1.20 seconds after firing, the projectile is moving upward and also in the positive x-direction horizontally.
Learn more about velocity component: https://brainly.com/question/24949996
#SPJ11
Required Information Suppose 100 mol of oxygen is heated at a constant pressure of 100 atm from 100'C 10 25 0°C, What is the magnitude of the work done by the gas during this expansion? The magnitude of the work done by the gas is
The magnitude of the work done by the gas during this expansion is 827 J.
The magnitude of the work done by the gas during this expansion of 100 moles of oxygen heated at a constant pressure of 100 atm from 100°C to 25°C can be calculated using the following equation for work done:
[tex]W = -PΔV[/tex]
where, P is the pressure of the gas and ΔV is the change in the volume of the gas.
The change in volume can be calculated using the ideal gas law:
PV = nRT, where, P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant and T is the temperature in Kelvin.
Using this formula, we can calculate the initial and final volumes of the gas. Let's assume the initial volume is V1 and the final volume is V2.
Therefore, [tex]PV1 = nRT1[/tex]
PV2 = nRT2
ΔV = V2 - V1
= (nR/P) (T1 - T2)
Putting the values, we get:
ΔV = (100 mol x 8.314 J/mol.K x (100+273) K) / 100 atm - (100 mol x 8.314 J/mol.K x (25+273) K) / 100 atm
ΔV = 8.27 L
The work done by the gas is:
W = -PΔV
= -100 atm x (-8.27 L)
= 827 J
Therefore, the magnitude of the work done by the gas during this expansion is 827 J.
To learn more about work visit;
https://brainly.com/question/19382352
#SPJ11
Several experiments are performed with light. Which of the following observations is not consistent with the wave model of light? a) The light can travel through a vacuum. b) The speed of the light is less in water than in air. c) The light can exhibit interference patterns when travelling through small openings. d) The beam of light travels in a straight line. e) The light can be simultaneously reflected and transmitted at certain interfaces.
Light has been a matter of extensive research, and experiments have led to various hypotheses regarding the nature of light. The two most notable hypotheses are the wave model and the particle model of light.
These models explain the behavior of light concerning the properties of waves and particles, respectively. Here are the observations for each model:a) Wave model: The light can travel through a vacuum.b) Wave model: The speed of the light is less in water than in air.c) Wave model
e) Wave model: The light can be simultaneously reflected and transmitted at certain interfaces.None of the observations contradicts the wave model of light. In fact, all the above observations are consistent with the wave model of light.The correct answer is d) The beam of light travels in a straight line. This observation is consistent with the particle model of light.
To know more about extensive visit:
https://brainly.com/question/12937142
#SPJ11
In medical imaging discuss how to minimize risk to patients and
operating staff. Recommend the safe dose levels for both staff and
patients under treatment as provided the national regulatory
body.
To ensure safety in medical imaging, follow radiation protocols, maintain equipment, train staff, screen patients, obtain consent, implement quality assurance, and adhere to safe dose level guidelines.
In medical imaging, minimizing risks to patients and operating staff is of utmost importance. Here are some general strategies to minimize risks:
Equipment Safety: Ensure that imaging equipment is properly maintained, calibrated, and regularly inspected to minimize any potential malfunctions or hazards.Radiation Safety: Follow strict radiation safety protocols, including shielding measures and appropriate use of lead aprons, thyroid collars, and protective eyewear. Use the "As Low As Reasonably Achievable" (ALARA) principle to minimize radiation exposure for both patients and staff.Training and Education: Provide comprehensive training to the operating staff on radiation safety measures, proper handling of equipment, and adherence to safety protocols. Regularly update their knowledge and skills through continuing education programs.Patient Screening: Conduct thorough patient screening to identify any potential contraindications or risks associated with the imaging procedure, such as pregnancy, allergies, or pre-existing medical conditions.Informed Consent: Obtain informed consent from patients, ensuring they are aware of the risks and benefits associated with the imaging procedure.Quality Assurance: Implement rigorous quality assurance programs to monitor and optimize imaging processes, including regular audits, performance evaluations, and maintenance of accurate documentation.As for the safe dose levels, these are typically regulated by national bodies such as the Food and Drug Administration (FDA) in the United States or equivalent regulatory authorities in other countries. Safe dose levels depend on the specific imaging modality (e.g., X-ray, CT scan, MRI) and the specific procedure being performed. It is crucial to follow the guidelines and recommendations provided by the regulatory body in each respective country to ensure the safety of both patients and staff.
It is important to note that specific safe dose levels may vary depending on factors such as age, weight, and individual patient circumstances. It is the responsibility of the healthcare provider to assess each patient's needs and follow the appropriate guidelines to ensure safe and effective imaging procedures.
To learn more about Food and Drug Administration (FDA), Visit:
https://brainly.com/question/1241693
#SPJ11
Review. The cosmic background radiation is blackbody radiation from a source at a temperature of 2.73K. (b) In what part of the electromagnetic spectrum is the peak of the distribution?
The peak of the distribution of the cosmic background radiation is in the microwave part of the electromagnetic spectrum. The frequency falls within the microwave region of the electromagnetic spectrum, indicating that the cosmic background radiation has its peak emission in that specific range.
The peak wavelength or frequency of blackbody radiation can be determined using Wien's displacement law, which states that the wavelength of the peak emission is inversely proportional to the temperature of the blackbody.
The formula for Wien's displacement law is:
λ_peak = b/T
where λ_peak is the peak wavelength, T is the temperature of the blackbody, and b is Wien's displacement constant, which is approximately equal to 2.898 × 10^(-3) m·K.
Substituting the given temperature T = 2.73 K into the formula, we can calculate the peak wavelength:
λ_peak = (2.898 × 10^(-3) m·K) / 2.73 K
≈ 1.06 × 10^(-3) m
To determine the corresponding region of the electromagnetic spectrum, we can use the relationship between wavelength and frequency:
c = λ · ν
where c is the speed of light (approximately 3.00 × 10^8 m/s), λ is the wavelength, and ν is the frequency.
Rearranging the equation, we get:
ν = c / λ
Substituting the calculated peak wavelength into the equation and solving for the frequency, we find:
ν = (3.00 × 10^8 m/s) / (1.06 × 10^(-3) m)
≈ 2.83 × 10^11 Hz
The frequency obtained corresponds to the microwave region of the electromagnetic spectrum.
The peak of the distribution of the cosmic background radiation, which is blackbody radiation from a source at a temperature of 2.73 K, is in the microwave part of the electromagnetic spectrum. This result is obtained by applying Wien's displacement law, which relates the peak wavelength of blackbody radiation to the temperature of the source.
The peak wavelength is determined to be approximately 1.06 × 10^(-3) m, which corresponds to a frequency of approximately 2.83 × 10^11 Hz. The frequency falls within the microwave region of the electromagnetic spectrum, indicating that the cosmic background radiation has its peak emission in that specific range.
To know more about electromagnetic spectrum ,visit:
https://brainly.com/question/23423065
#SPJ11
Question 32 of 37 > Attempt Consider the inelastic collision. Two lumps of matter are moving directly toward each other. Each lump has a mass of 1,500 kg and is moving at a spoed of 0.880. The two lumps collide and stick together. Answer the questions, keeping in mind that relativistic effects cannot be neglected in this case. What is the final speed of the combined lump, expressed as a fraction of e? 0.44 = incorrect What is the final mass me of the combined lump immediately after the collision, assuming that there has not yet been significant energy loss due to radiation or fragmentation? ks 2.45 m = incorrect
In an inelastic collision between two lumps of matter, each with a mass of 1,500 kg and a speed of 0.880, the final speed of the combined lump is not 0.44 times the speed of light (e). The final mass of the combined lump immediately after the collision is not 2.45 m.
Final Speed: The final speed of the combined lump in an inelastic collision cannot be determined using the given information.
It requires additional data, such as the nature of the collision and the relative velocities of the lumps. Without this information, it is not possible to calculate the final speed as a fraction of the speed of light (e).
Final Mass: The final mass of the combined lump can be calculated by adding the individual masses together.
Since both lumps have a mass of 1,500 kg, the combined mass of the lump immediately after the collision would be 3,000 kg. There is no indication of a factor or value (2.45 m) that affects the calculation of the final mass, so it remains at 3,000 kg.
To learn more about inelastic collision
Click here brainly.com/question/14521843
#SPJ11
11. (13 points) A mirror has a focal length of f= -50.0cm. An object is placed 80.0cm from the mirror. a. Is the mirror concave or convex? b. What is the image distance? (Include the + or -sign.) c. What is the magnification? (Include the + or -sign.) d. Is the image real or virtual? e. Is the image upright or inverted?
a) The given mirror has a focal length of f= -50.0 cm and the object is placed at a distance of 80.0 cm from the mirror. As the distance between the object and the mirror is greater than the focal length of the mirror, the given mirror is a concave mirror.
b) The mirror formula is given by :
`1/v - 1/u = 1/f`
Where, v is the image distance, u is the object distance and f is the focal length of the mirror. The object distance is given as u= -80.0 cm (as the object is placed at a distance of 80.0 cm from the mirror) and f= -50.0 cm (as given in the question).Therefore, putting these values in the mirror formula:
1/v + 1/80.0 = 1/-50.01/v = -0.025v = -40.0 cm
The image distance is v= -40.0 cm.
c) The magnification of the mirror is given by:
Magnification(m) = -v/u
Where,v is the image distance and u is the object distance
[tex]M = -(-40.0)/(-80.0)M = 0.5 (positive value)[/tex]
Therefore, the magnification is 0.5 (positive)
d) As the image distance is negative (-40.0 cm), therefore the image is formed behind the mirror. Hence, the image formed is a real image.
e) The magnification of the image is positive (+0.5) therefore, the image formed will be upright.
So, the answer for the given question are as follows:
a) The mirror is concave.
b) The image distance is v= -40.0 cm. c) The magnification is 0.5 (positive)
d) The image formed is real.
e) The image formed is upright.
To know more about mirror visit:
https://brainly.com/question/1160148
#SPJ11
Please show working out.
2. A mass of a liquid of density \( \rho \) is thoroughly mixed with an equal mass of another liquid of density \( 2 \rho \). No change of the total volume occurs. What is the density of the liquid mi
When equal masses of a liquid with density ρ and another liquid with density 2ρ are mixed, the resulting liquid mixture has a density of 4/3ρ. Thus, option A, 4/3ρ, is the correct answer.
To determine the density of the liquid mixture, we need to consider the mass and volume of the liquids involved. Let's assume that the mass of each liquid is m and the density of the first liquid is ρ.
Since the mass of the first liquid is equal to the mass of the second liquid (m), the total mass of the mixture is 2m.
The volume of each liquid can be calculated using the density formula: density = mass/volume. Rearranging the formula, we have volume = mass/density.
For the first liquid, its volume is m/ρ.
For the second liquid, since its density is 2ρ, its volume is m/(2ρ).
When we mix the two liquids, the total volume remains unchanged. Therefore, the volume of the mixture is equal to the sum of the volumes of the individual liquids.
Volume of mixture = volume of first liquid + volume of second liquid
Volume of mixture = m/ρ + m/(2ρ)
Volume of mixture = (2m + m)/(2ρ)
Volume of mixture = 3m/(2ρ)
Now, to calculate the density of the mixture, we divide the total mass (2m) by the volume of the mixture (3m/(2ρ)).
Density of mixture = (2m) / (3m/(2ρ))
Density of mixture = 4ρ/3m
Since we know that the mass of the liquids cancels out, the density of the mixture simplifies to:
Density of mixture = 4ρ/3
Therefore, the density of the liquid mixture is 4/3ρ, which corresponds to option A.
To know more about the liquid mixture refer here,
https://brainly.com/question/30101907#
#SPJ11
Complete question :
A mass of a liquid of density ρ is thoroughly mixed with an equal mass of another liquid of density 2ρ. No change of the total volume occurs. What is the density of the liquid mixture? A. 4/3ρ B. 3/2ρ C. 5/3ρ D. 3ρ
Question 3 1 pts A photon has a wavelength of 680nm. What is its frequency? O 2.0x10^2 Hz 6.8x10^14 Hz 2.3x10^-15 Hz 4.4x10^14 Hz Question 4 1 pts A certain photon has a wavelength of 680nm. What is i
The frequency of a photon with a wavelength of 680 nm can be calculated using the equation: frequency = speed of light / wavelength. Plugging in the values, the frequency is approximately 4.4 x 10^14 Hz.
The equation c = λ * ν relates the speed of light (c) to the wavelength (λ) and frequency (ν) of a photon. Rearranging the equation, we can solve for the frequency:
ν = c / λ
Given that the wavelength is 680 nm, we need to convert it to meters by dividing by 10^9:
λ = 680 nm = 680 x 10^-9 m
Substituting the values into the equation:
ν = (3 x 10^8 m/s) / (680 x 10^-9 m)
= 4.4 x 10^14 Hz
Therefore, the frequency of the photon is 4.4x10^14 Hz.
Note: The explanation provided assumes the use of the correct values for the speed of light and the given wavelength.Question 3 1 pts A photon has a wavelength of 680nm. What is its frequency? O 2.0x10^2 Hz 6.8x10^14 Hz 2.3x10^-15 Hz 4.4x10^14 Hz Question 4 1 pts A certain photon has a wavelength of 680nm. What is i
To learn more about Wavelength - brainly.com/question/7143261
#SPJ11
I am currently working on a project about producing electricity using solar energy, heating elements and water, and need to calculate how many elements I need, to make sure that my water heater can withstand high amounts of sun rays. assuming that each heat element can utilize about 3 KW of solar energy without getting damaged, how can I calculate the proper amount of heating elements needed in order to warm up 90 000 litres of water every day from 20 to 70 degrees celcius, while making sure that my device has enough heating elements to not overheat and get damaged? are there any other factors i need to take into consideration?
This means that 6,207 heating elements are required to warm up 90,000 liters of water every day from 20 to 70 degrees Celsius.
Solar energy is the energy generated from the sun that can be used as an alternative source of electricity production. The generation of electricity from solar energy involves the use of solar panels, which absorb sunlight and convert it into electricity. This electricity is stored in batteries for later use.
Solar water heaters work by absorbing sunlight and converting it into heat energy, which is used to warm water. The water is stored in an insulated tank, which can be used for domestic or industrial purposes.
Heat energy = mCΔt, where m = mass of water, C = specific heat capacity of water, and Δt = temperature difference of the water.The specific heat capacity of water is 4.186 J/g°C.
Therefore, the energy required to heat up 90,000 liters of water by 50°C is:Q = mCΔt = 90,000 kg x 4.186 J/g°C x 50°C = 18,619,700 kJ.To heat up 90,000 liters of water by 50°C, a total of 18,619,700 kJ of energy is required.
Since each heat element can utilize about 3 kW of solar energy without getting damaged, the number of heat elements required is:
Number of heat elements = Total energy required / Energy per heat elementNumber of heat elements = 18,619,700 kJ / 3 kW = 6,206.5667 heat elementsSince the number of heat elements must be a whole number, it can be rounded up to 6,207 heat elements.
This means that 6,207 heating elements are required to warm up 90,000 liters of water every day from 20 to 70 degrees Celsius.
Consider heating element and solar energy conversion efficiency, insulation to minimize heat loss, assess solar radiation availability, implement temperature control and safety mechanisms, account for water flow rate, and plan for system scalability.along with the calculations provided, you can design a solar water heating system that efficiently and effectively meets your desired water heating needs while ensuring the longevity and safety of the system.
Learn more about heating elements at: https://brainly.com/question/29284313
#SPJ11
If two capacitors are connected in series, the equivalent capacitance of the two capacitors is each of the individual capacitors. a. the same as b. the sum of c. less than d. greater than If a proton
If two capacitors are connected in series, the equivalent capacitance of the two capacitors is less than each of the individual capacitors.
When capacitors are connected in series, their total capacitance decreases. The equivalent capacitance of a combination of two capacitors in series is less than the individual capacitance of either capacitor. This is because the voltage across each capacitor is identical, and the total voltage of the combination is split between them.How is the equivalent capacitance of capacitors connected in series calculated?For two capacitors in series, the equivalent capacitance can be calculated using the following formula:
1/CTotal = 1/C1 + 1/C2
Where CTotal is the equivalent capacitance of the combination and C1 and C2 are the capacitance of the individual capacitors.
This equation implies that as the number of capacitors increases in series, the equivalent capacitance decreases. And if all the capacitors are of the same value, the equivalent capacitance can be calculated as:
Ceq = C/n where C is the capacitance of each capacitor and n is the total number of capacitors.
Thus, if two capacitors are connected in series, the equivalent capacitance of the two capacitors is less than each of the individual capacitors.
Learn more about equivalent capacitance https://brainly.com/question/30905469
#SPJ11
Which of these statements best explains why a telescope enables us to see details of a distant object such as the Moon or a planet more clearly?
The image formed by the telescope is larger than the object.
The image formed by the telescope extends a larger angle at the eye than the object does.
The telescope can also collect radio waves that sharpen the visual image
Justify your answer to the previous question. choose 1
Interference
Light Gathering Power
Rayleigh Criterion
The statement that best explains why a telescope enables us to see details of a distant object such as the Moon or a planet more clearly is: The image formed by the telescope is larger than the object.
Telescope enables us to see details of a distant object such as the Moon or a planet more clearly because the image formed by the telescope is larger than the object. It is because the image is formed by the convergence of light rays from the object at a single point and at the same distance from the lens of the telescope. This forms an enlarged and more detailed view of the object, which helps in seeing it more clearly. This is how a telescope magnifies the image of a distant object.
The other options do not explain why a telescope enables us to see details of a distant object such as the Moon or a planet more clearly. The statement "The image formed by the telescope extends a larger angle at the eye than the object does" is incorrect because a telescope does not extend the angle at the eye. The statement "The telescope can also collect radio waves that sharpen the visual image" is also incorrect because telescopes cannot collect radio waves, radio telescopes are specifically designed to do this.
Justification: The correct answer for the previous question is Light Gathering Power. Light gathering power is a measure of the ability of a telescope to collect light. The larger the telescope's light gathering power, the more light it can collect, which enables it to form a brighter and more detailed image of the object being observed. This is important because the more light the telescope collects, the greater the amount of detail that can be seen.
To know more about telescope visit :
https://brainly.com/question/19349900
#SPJ11
Two charges are located on the x axis: 91 = +4.9 µC at x₁ = +4.9 cm, and q2 = +4.9 μC at x2 = -4.9 cm. Two other charges are located on the y axis: 93 +3.6 μC at y3 = +5.4 cm, and 94 = -11 μC at y4=+7.0 cm. Find (a) the magnitude and (b) the direction of the net electric field at the origin.
(a) The magnitude of the net electric field at the origin is approximately 1.32 x 10^6 N/C.(b) The direction of the net electric field at the origin is towards the negative x-axis.
To find the net electric field at the origin, we need to calculate the electric field contributions from each of the charges and then add them vectorially. The electric field due to a point charge is given by Coulomb's Law:
E = k * (q / r^2)
where E is the electric field, k is the electrostatic constant (k = 8.99 x 10^9 N m^2/C^2), q is the charge, and r is the distance between the charge and the point where the electric field is being calculated.Let's calculate the electric field contributions from each charge and then combine them:
Charge 1 (q1 = +4.9 µC) at x1 = +4.9 cm:
r1 = √((0 - x1)^2) = √((0 - 4.9 cm)^2) = 4.9 cm = 0.049 m
E1 = k * (q1 / r1^2) = (8.99 x 10^9 N m^2/C^2) * (4.9 x 10^-6 C / (0.049 m)^2) = 898000 N/C
Charge 2 (q2 = +4.9 µC) at x2 = -4.9 cm:
r2 = √((0 - x2)^2) = √((0 + 4.9 cm)^2) = 4.9 cm = 0.049 m
E2 = k * (q2 / r2^2) = (8.99 x 10^9 N m^2/C^2) * (4.9 x 10^-6 C / (0.049 m)^2) = 898000 N/C
Charge 3 (q3 = +3.6 µC) at y3 = +5.4 cm:
r3 = √((0 - y3)^2) = √((0 - 5.4 cm)^2) = 5.4 cm = 0.054 m
E3 = k * (q3 / r3^2) = (8.99 x 10^9 N m^2/C^2) * (3.6 x 10^-6 C / (0.054 m)^2) = 148000 N/C
Charge 4 (q4 = -11 µC) at y4 = +7.0 cm:
r4 = √((0 - y4)^2) = √((0 - 7.0 cm)^2) = 7.0 cm = 0.07 m
E4 = k * (q4 / r4^2) = (8.99 x 10^9 N m^2/C^2) * (-11 x 10^-6 C / (0.07 m)^2) = -170000 N/C
Now, we can add the electric fields vectorially. Since the electric field is a vector, we need to consider both magnitude and direction.
Magnitude of the net electric field:
|E_net| = √(E1^2 + E2^2 + E3^2 + E4^2)
|E_net| = √((898000 N/C)^2 + (898000 N/C)^2 + (148000 N/C)^2 + (-170000 N/C)^2)
|E_net| ≈ 1.32 x 10^6 N/C
Direction of the net electric field:
The direction of the net electric field can be determined by considering the x and y components of the individual electric fields.
To learn more about Coulomb's law, click here:
https://brainly.com/question/506926
#SPJ11
A space traveller weighs herself on earth at a location where the acceleration due to gravity is 9.83 m/s29.83 m/s2 and finds a value of 525 n.525 n. what is her mass ?
The mass of the space traveler is approximately 53.42 kg.
The weight of an object is the force exerted on it by gravity, while mass is the measure of the amount of matter in an object. The weight of an object can be calculated using the formula:
Weight = Mass x Acceleration due to gravity
In this case, the weight of the space traveler on Earth is given as 525 N and the acceleration due to gravity on Earth is 9.83 m/s^2.
To find the mass of the space traveler, we can rearrange the formula:
Mass = Weight / Acceleration due to gravity
Substituting the given values, we have:
Mass = 525 N / 9.83 m/s^2
Simplifying this calculation, we get:
Mass ≈ 53.42 kg
Therefore, the mass of the space traveler is approximately 53.42 kg.
to know more about acceleration here:
brainly.com/question/2303856
#SPJ11
1. Solve y' += 2 using Integrating Factor 2. Solve y²dy = x² - xy using Homogenous Equation
To solve y' + 2 = 0 using an integrating factor, we multiply by e^(2x) and integrate. To solve y^2dy = x^2 - xy using a homogeneous equation, we substitute y = vx and solve a separable equation.
1. To solve y' + 2 = 0 using an integrating factor, we first rewrite the equation as y' = -2. Then, we multiply both sides by the integrating factor e^(2x):
e^(2x)*y' = -2e^(2x)
We recognize the left-hand side as the product rule of (e^(2x)*y)' and integrate both sides with respect to x:
e^(2x)*y = -e^(2x)*C1 + C2
where C1 and C2 are constants of integration. Solving for y, we get:
y = -C1 + C2*e^(-2x)
where C1 and C2 are arbitrary constants.
2. To solve y^2dy = x^2 - xy using a homogeneous equation, we first rewrite the equation in the form:
dy/dx = (x^2/y - x)
This is a homogeneous equation because both terms have the same degree of homogeneity (2). We then substitute y = vx and dy/dx = v + xdv/dx into the equation, which gives:
v + xdv/dx = (x^2)/(vx) - x
Simplifying, we get:
vdx/x = (1 - v)dv
This is a separable equation that we can integrate to get:
ln|x| = ln|v| - v + C
where C is the constant of integration. Rearranging and substituting back v = y/x, we get:
ln|y| - ln|x| - y/x + C = 0
This is the general solution of the homogeneous equation.
know more about integrating factor here: brainly.com/question/32554742
#SPJ11
Part A Green light ( = 504 nm) strikes a single slit at normal incidence. What width slit will produce a central maximum that is 2.50 cm wide on a screen 1.80 m from the slit? Express your answer to three significant figures. VO AO ΑΣΦ ? W = um Submit Request Answer
The width of the single slit required to produce a central maximum that is 2.50 cm wide on a screen 1.80 m from the slit is 0.036 um.
Given data: The wavelength of green light = 504 nm, Distance between the screen and the single slit = 1.80 m, Width of the central maximum = 2.50 cm = 2.50 × 10⁻² m, Width of the single slit = ?
The formula for the width of the single slit that will produce a central maximum is given by: W = λD/d Where, λ is the wavelength of the light, D is the distance between the slit and the screen and d is the width of the single slit
By putting the given values in the formula, we get: W = λD/d
⇒ d = λD/W
⇒ d = (504 × 10⁻⁹ m) × (1.80 m) / (2.50 × 10⁻² m)
⇒ d = 0.036288 m
≈ 0.036 um (rounded off to three significant figures).
Therefore, the width of the single slit required to produce a central maximum that is 2.50 cm wide on a screen 1.80 m from the slit is 0.036 um (rounded off to three significant figures).
So, The width of the single slit required to produce a central maximum that is 2.50 cm wide on a screen 1.80 m from the slit is 0.036 um.
To know more about single slit, refer
https://brainly.com/question/24305019
#SPJ11
: 1. Two masses M and m hang on a three looped pulley as shown below. M is 50 kg and m is 12 kg. There is also a rope that prevents rotation. The radii are 18cm, 48cm, and 60cm. a) Determine the torque from the mass M b) Determine the Tension in the horizontal rope M c) Later the string holding m is cut. What would be the tension in the rope now?
The torque from mass M is 88.2 N·m, the tension in the horizontal rope for mass M is 490 N, and when the string holding mass m is cut, the tension in the rope remains at 490 N.
a) To determine the torque from the mass M, we need to calculate the force exerted by M and the lever arm distance. The force exerted by M is equal to its weight, which is given by F = M * g, where g is the acceleration due to gravity. Thus, F = 50 kg * 9.8 m/[tex]s^2[/tex] = 490 N.
The lever arm distance is the radius of the pulley on which M hangs, which is 18 cm or 0.18 m. Therefore, the torque from mass M is given by torque = F * r = 490 N * 0.18 m = 88.2 N·m.
b) To determine the tension in the horizontal rope for mass M, we can consider the equilibrium of forces. Since the system is at rest, the tension in the horizontal rope is equal to the weight of M, which is Tension = M * g = 50 kg * 9.8 m/[tex]s^2[/tex] = 490 N.
c) When the string holding m is cut, the tension in the rope will no longer be determined by the weight of m. Instead, it will only be determined by the weight of M. Therefore, the tension in the rope would remain the same as in part (b), which is Tension = 490 N.
To know more about torque refer to-
https://brainly.com/question/30338175
#SPJ11
Current in a Loop uniform magnetic field, perpendicular to the plane of the coil, changes at a rate of 9.00E-3 T/s. Determine the current in A 35.0 cm diameter coil consists of 24 turns of circular copper wire 2.60 mm in diameter the loop Subrnit Answer Tries 0/12 Determine the rate at which thermal energy is produced.
The current flowing through the loop is approximately 0.992 Amperes. The rate of change of magnetic field is given as 9.00E-3 T/s. Therefore, the rate of change of magnetic flux is:
dΦ/dt = (9.00E-3 T/s) * 0.3848 m^2 = 3.4572E-3 Wb/s
The current in the loop can be determined by using Faraday's law of electromagnetic induction. According to the law, the induced electromotive force (emf) is equal to the rate of change of magnetic flux through the loop. The emf can be calculated as: ε = -N * dΦ/dt. where ε is the induced emf, N is the number of turns in the coil, and dΦ/dt is the rate of change of magnetic flux.The magnetic flux (Φ) through the loop is given by: Φ = B * A. where B is the magnetic field strength and A is the area of the loop.Given that the coil has a diameter of 35.0 cm and consists of 24 turns, we can calculate the area of the loop: A = π * (d/2)^2. where d is the diameter of the coil.
Substituting the values, we get: A = π * (0.35 m)^2 = 0.3848 m^2
The rate of change of magnetic field is given as 9.00E-3 T/s. Therefore, the rate of change of magnetic flux is:
dΦ/dt = (9.00E-3 T/s) * 0.3848 m^2 = 3.4572E-3 Wb/s
Now, we can calculate the induced emf:
ε = -N * dΦ/dt = -24 * 3.4572E-3 Wb/s = -0.08297 V/s
Since the coil is made of copper, which has low resistance, we can assume that the induced emf drives the current through the loop. Therefore, the current flowing through the loop is: I = ε / R
To calculate the resistance (R), we need the length (L) of the wire and its cross-sectional area (A_wire).The cross-sectional area of the wire can be calculated as:
A_wire = π * (d_wire/2)^2
Given that the wire diameter is 2.60 mm, we can calculate the cross-sectional area: A_wire = π * (2.60E-3 m/2)^2 = 5.3012E-6 m^2
The length of the wire can be calculated using the formula:
L = N * circumference
where N is the number of turns and the circumference can be calculated as: circumference = π * d
L = 24 * π * 0.35 m = 26.1799 m
Now we can calculate the resistance: R = ρ * L / A_wire
where ρ is the resistivity of copper (1.7E-8 Ω*m).
R = (1.7E-8 Ω*m) * (26.1799 m) / (5.3012E-6 m^2) = 8.3741E-2 Ω
Finally, we can calculate the current:
I = ε / R = (-0.08297 V/s) / (8.3741E-2 Ω) = -0.992 A
Therefore, the current flowing through the loop is approximately 0.992 Amperes.
To learn more about current:
https://brainly.com/question/31315986
#SPJ11
a) Define the activity of a radioactive source b) The activity of a radioactive source is proportional to the number of radioactive nuclei present within it.
a) Define the activity of a radioactive source.
The activity of a radioactive source can be defined as the rate at which the number of radioactive nuclei of that source undergoes decay or the amount of radiation produced by the source per unit of time.
b) The activity of a radioactive source is proportional to the number of radioactive nuclei present within it. The activity of a radioactive source is directly proportional to the number of radioactive nuclei present within it.
The higher the number of radioactive nuclei, the greater the activity of the radioactive source.
Learn more about radioactive sources and nuclei https://brainly.com/question/9932896
#SPJ11
A projectile is fired at an angle 45 ° from a gun that is 90 m above the flat ground, emerging
from the gun with a speed of 180 m/s.
(a) How long does the projectile remain in air?
(b) At what horizontal distance from the firing ground does it strike the ground?
(c) What is the maximum height (from ground) reached?
(a) The projectile remains in the air for 20.82 seconds.
(b) The projectile strikes the ground at a horizontal distance of 2,953.33 meters from the firing ground.
(c) The maximum height reached by the projectile from the ground is 1,845.92 meters.
Projectile motion problemTo solve the given problem, we can analyze the projectile motion and use the equations of motion.
Given:
Initial angle of projection (θ) = 45°
Initial speed of the projectile (v0) = 180 m/s
Height of the gun (h) = 90 m
(a) To find the time of flight (T), we can use the equation:
T = (2 * v0 * sin(θ)) / g
Substituting the given values, we get:
T = (2 * 180 * sin(45°)) / 9.8
T ≈ 20.82 s
(b) To find the horizontal distance (R) from the firing ground, we can use the equation:
R = v0 * cos(θ) * T
R = 180 * cos(45°) * 20.82
R ≈ 2,953.33 m
(c) To find the maximum height (H) reached by the projectile, we can use the equation:
H = (v0 * sin(θ))^2 / (2 * g)
Substituting the given values, we get:
H = (180 * sin(45°))^2 / (2 * 9.8)
H ≈ 1,845.92 m
More on projectile motion can be found here: https://brainly.com/question/12860905
#SPJ4
The projectile will remain in the air for 25.65 s, will strike the ground at a horizontal distance of 1645.9 m from the firing ground and will reach a maximum height of 4116.7 m from the ground.
(a) The time projectile will remain in the air, The time of flight, t = 2usinθ/g, where: u is the initial velocity of the projectileθ is the angle at which the projectile is launched from the ground g is the acceleration due to gravity= 2 × 180 sin 45° / 9.8= 25.65 s
(b) The horizontal distance from the firing ground that it strikes the ground, Horizontal range, R = u² sin 2θ / g= 180² sin 90° / 9.8= 1645.9 m
(c) The maximum height (from ground) reached, The maximum height (h) reached, h = u² sin²θ / 2g= 180² sin² 45° / 2 × 9.8= 4116.7 m (approx.)
Learn more about projectile
https://brainly.com/question/28043302
#SPJ11
A transformer changes the voltage from 110 VAC to 426 VAC. If the original current is 5 A, what is the output current?
Given a transformer that converts the voltage from 110 VAC to 426 VAC and an input current of 5 A, we need to determine the output current. The output current can be calculated using the transformer's voltage and current ratio, which is defined by the turn ratio of the transformer.
To determine the output current, we can use the voltage and current ratio of the transformer, which is defined as the ratio of the output voltage to the input voltage is equal to the ratio of the output current to the input current. Mathematically, this can be expressed as V_out / V_in = I_out / I_in. Rearranging the equation, we can find the output current (I_out) by multiplying the input current (I_in) with the ratio of the output voltage (V_out) to the input voltage (V_in). In this case, the output current would be (426 V / 110 V) * 5 A, which results in an output current of approximately 19.5 A.
Learn more about current here: brainly.com/question/1100341
#SPJ11
A 1.65 kg book is sliding along a rough horizontal surface. At point A it is moving at 3.22 m/s , and at point B it has slowed to 1.47 m/s.
How much work was done on the book between A and B? If -0.660 J of work is done on the book from B to C, how fast is it moving at point C? How fast would it be moving at C if 0.660 J of work were done on it from B to C?
The work done between points A and B is -6.159 J. The book is moving at approximately 1.214 m/s at point C when -0.660 J of work is done on it from point B and if 0.660 J of work were done on the book from point B to point C, it would be moving at approximately 1.968 m/s at point C.
Given:
m, the mass of the book = 1.65 kg
v₁, velocities at points A = 3.22 m/s
v₂, velocity = 1.47 m/s
The work done on an object is equal to its change in kinetic energy.
W = ΔKE
ΔKE: change in kinetic energy.
ΔKE = KE₂ - KE₁
KE₁: initial kinetic energy
KE₂: final kinetic energy.
Calculating the initial and final kinetic energies:
KE₁ = (1/2) × m × v₁²
KE₂ = (1/2) × m × v₂²
Calculating the initial and final kinetic energies:
KE₁ = (1/2) × 1.65 × (3.22)²
KE₁ = 8.034 J
KE₂ = (1/2) × 1.65 × (1.47)²
KE₂ = 1.875 J
The work done between points A and B:
W = ΔKE = KE₂ - KE₁
W = 1.875 - 8.034
W = -6.159 J
Calculating the final kinetic energy at point C (KE₃). Assuming the book starts from rest at point B:
KE₃ = KE₂ + ΔKE
KE₃ = 1.875 - 0.660
KE₃ = 1.215 J
Finding the velocity at point C (v₃)
KE₃ = (1/2) × m × v₃²
1.215 = (1/2) × 1.65 × v₃²
v₃² = (2 ×1.215) / 1.65
v₃≈ √1.4727
v₃ ≈ 1.214 m/s
Calculating the final kinetic energy (KE₃) and velocity (v₃) at point C:
W = ΔKE
KE₃ = KE₂ + ΔKE
KE₃ = 2.535 J
v₃² = (2 × 2.535) / 1.65
v₃ ≈ √3.8727
v₃ ≈ 1.968 m/s
Therefore, the correct answers are -6.159 J, 1.214 m/s, and 1.968 m/s respectively.
To know more about Kinetic energy, click here:
https://brainly.com/question/999862
#SPJ4
A slender rod with a length of 0.250 m rotates with an angular speed of 8.10 rad/s about an axis through one end and perpendicular to the rod. The plane of rotation of the rod is perpendicular to a uniform magnetic field with a magnitude of 0.600 T. What is the induced emf in the rod? Express your answer in volts. What is the potential difference between its ends? Express your answer in volts.
The induced emf in the rod rotating with an angular speed of 8.10 rad/s in a perpendicular magnetic field of magnitude 0.600 T is 4.86 V, and the potential difference between its ends is also 4.86 V.
When a conducting rod moves perpendicular to a magnetic field, an induced emf is generated in the rod according to Faraday's law of electromagnetic induction.
The induced emf in the rod can be calculated using the equation:
emf = B * L * ω
where B is the magnetic field strength, L is the length of the rod, and ω is the angular speed.
B = 0.600 T (magnetic field strength)
L = 0.250 m (length of the rod)
ω = 8.10 rad/s (angular speed)
Substituting the given values into the equation:
emf = 0.600 * 0.250 * 8.10 = 4.86 V
learn more about EMF here:
https://brainly.com/question/16764848
#SPJ11
A bowling ball of mass 6.75 kg is rolling at 2.52 m/s along a level surface. (a) Calculate the ball's translational kinetic energy. (b) Calculate the ball's rotational kinetic energy. 23] (c) Calculate the ball's total kinetic energy. ] (d) How much work would have to be done on the ball to bring it to rest?
In this scenario, a bowling ball with a mass of 6.75 kg is rolling at a speed of 2.52 m/s along a level surface.
The task is to calculate the ball's translational kinetic energy (Part a), rotational kinetic energy (Part b), total kinetic energy (Part c), and the amount of work required to bring the ball to rest (Part d).
Part a: The translational kinetic energy of the ball can be calculated using the equation KE_trans = (1/2) * m * v², where KE_trans is the translational kinetic energy, m is the mass of the ball, and v is its velocity.
Part b: The rotational kinetic energy of the ball can be determined using the equation KE_rot = (1/2) * I * ω², where KE_rot is the rotational kinetic energy, I is the moment of inertia of the ball, and ω is its angular velocity. For a solid sphere, the moment of inertia is given by I = (2/5) * m * r², where r is the radius of the ball.
Part c: The total kinetic energy of the ball is the sum of its translational and rotational kinetic energies: KE_total = KE_trans + KE_rot.
Part d: To bring the ball to rest, work must be done to remove its kinetic energy. The work required can be calculated as W = KE_total. Therefore, the work done on the ball to bring it to rest is equal to its total kinetic energy.
Learn more about speed here: brainly.com/question/28224010
#SPJ11
A tight rope has a longitudinal density (5 x 10^-2
kg/m) and a tensile force of 80 N. The rope's angular frequency
is.
The power that has to be supplied to the rope to generate harmonic waves at a frequency of 60Hz and an amplitude of 6cm is 251W. Option b. 251W is correct.
To calculate the power required to generate harmonic waves on the rope, we can use the formula:
P = (1/2) * μ * v * ω^2 * A^2
Where:
P is the power,μ is the linear mass density of the rope (kg/m),v is the velocity of the wave (m/s),ω is the angular frequency of the wave (rad/s),and A is the amplitude of the wave (m).First, let's calculate the velocity of the wave. For a wave on a stretched rope, the velocity is given by:
v = √(T/μ)
Where T is the tension in the rope (N).
Given:
Linear mass density (μ) = 5 × 10^2 kg/mTension (T) = 80 NAmplitude (A) = 6 cm = 6/100 mFrequency (f) = 60 Hzω = 2πfCalculating the velocity:
v = √(T/μ) = √(80 / (5 × 10^2)) = √(16/100) = 0.4 m/s
Calculating ω:
ω = 2πf = 2π(60) = 120π rad/s
Now, substituting the values into the power formula:
P = (1/2) * μ * v * ω^2 * A^2
= (1/2) * (5 × 10^2) * (0.4) * (120π)^2 * (6/100)^2
≈ 251 W
Therefore, the power that has to be supplied to the rope to generate harmonic waves at a frequency of 60 Hz and an amplitude of 6 cm is approximately 251 W. Therefore, option b. 251W is the correct answer.
The complete question should be:
A stretched rope having linear mass density 5×10²kgm⁻¹ is under a tension of 80N. The power that has to be supplied to the rope to generate harmonic waves at a frequency of 60Hz and an amplitude of 6cm is
a. 215W
b. 251W
c. 512W
d. 521W
To learn more about harmonic waves, Visit:
https://brainly.com/question/33192840
#SPJ11
7. A 3 meter long wire carries a current of 5 A and is immersed within a uniform magnetic field B. When this wire lies along the +x axis (current in +x direction), a magnetic force 1 F₁ = (+9N1) acts on the wire, and when it lies on the +y axis (current in +y direction), the force is F₂ = (- 9N1). AA A Find the magnetic field B, expressing your answer in i, j, k notation.
The magnetic field B can be determined by analyzing the forces acting on the wire in different orientations. By considering the given forces and orientations, the magnetic field B is determined to be B = 3.6i - 3.6j + 0k T.
When the wire lies along the +x axis, a magnetic force F₁ = +9N₁ acts on the wire. Since the wire carries a current in the +x direction, we can use the right-hand rule to determine the direction of the magnetic field B. The force F₁ is directed in the -y direction, perpendicular to both the current and magnetic field, indicating that the magnetic field must point in the +z direction.
When the wire lies along the +y axis, a magnetic force F₂ = -9N₁ acts on the wire. Similarly, using the right-hand rule, we find that the force F₂ is directed in the -x direction. This implies that the magnetic field must be in the +z direction to satisfy the right-hand rule.
Since the magnetic field B has a z-component but no x- or y-components, we can express it as B = Bi + Bj + Bk. The forces F₁ and F₂ allow us to determine the magnitudes of the x- and y-components of B.
For the wire along the +x axis, the force F₁ is given by F₁ = qvB, where q is the charge, v is the velocity of charge carriers, and B is the magnetic field. The magnitude of F₁ is equal to qvB, and since the wire carries a current of 5 A, the magnitude of F₁ is given by 9N₁ = 5A * B, which leads to B = 1.8 N₁/A.
Similarly, for the wire along the +y axis, the force F₂ is given by F₂ = qvB, where q, v, and B are the same as before. The magnitude of F₂ is equal to qvB, and since the wire carries a current of 5 A, the magnitude of F₂ is given by 9N₁ = 5A * B, which leads to B = -1.8 N₁/A.
Combining the x- and y-components, we find that B = 1.8i - 1.8j + 0k N₁/A. Finally, since 1 T = 1 N₁/A·m, we can convert N₁/A to T and obtain the magnetic field B = 3.6i - 3.6j + 0k T.
Learn more about Magnetic Field here:
brainly.com/question/14848188
#SPJ11
Different situation now. You re out in space, on a rotating wheel-shaped space station of radius 557 m. You feel planted firmly on the floor, due to artificial gravity. The gravity you experience is Earth-normal, that is, g -9.81 m/s^2. How fast is the space station rotating in order to produce this much artificial gravity? Express your answer in revolutions per minute (rpm). О 0.133 rpm 73.9 rpm 0.887 rpm 1.267 rpm
The space station is rotating at approximately 0.887 rpm to produce Earth-normal artificial gravity.
To calculate the speed of the space station rotating to produce Earth-normal artificial gravity, we can use the centripetal acceleration formula:
ac = ω²r
where ac is the centripetal acceleration, ω is the angular velocity, and r is the radius of the space station.
We know that ac is equal to the acceleration due to gravity (g). Substituting the given values, we have:
g = ω²r
Solving for ω, we get:
ω = sqrt(g / r)
Plugging in the values:
g = 9.81 m/s²
r = 557 m
ω = sqrt(9.81 / 557) ≈ 0.166 rad/s
To convert this angular velocity to revolutions per minute (rpm), we can use the conversion factor of 1 revolution = 2π radians, and there are 60 seconds in a minute:
ω_rpm = (0.166 rad/s) * (1 revolution / 2π rad) * (60 s / 1 min) ≈ 0.887 rpm
To know more about space station refer to-
https://brainly.com/question/14547200
#SPJ11
To fit a contact lens to a patient's eye, a keratometer can be used to measure the curvature of the cornea-the front surface of the eye. This instrument places an illuminated object of known size at a known distance p from the cornea, which then reflects some light from the object, forming an image of it. The magnification M of the image is measured by using a small viewing telescope that allows a comparison of the image formed by the cornea with a second calibrated image projected into the field of view by a prism arrangement. Determine the radius of curvature of the cornea when p=34.0 cm and M=0.0180.
The radius of curvature of the cornea is 7.53 mm.
To determine the radius of curvature of the cornea, we can use the relationship between the magnification (M), the distance between the object and the cornea (p), and the radius of curvature (R) of the cornea. The magnification can be expressed as M = (1 - D/f), where D is the distance between the calibrated image and the viewing telescope and f is the focal length of the prism arrangement.
Given that M = 0.0180, we can substitute this value into the magnification equation. By rearranging the equation, we can solve for D/f.Next, we need to consider the geometry of the system. The distance D is related to the distance p and the radius of curvature R through the equation D = 2R(p - R)/(p + R).By substituting the known values of M = 0.0180 and p = 34.0 cm into the equation, we can solve for D/f. Once we have D/f, we can solve for R by substituting the values of D/f and p into the geometry equation. After performing the calculations, the radius of curvature of the cornea is found to be approximately 7.53 mm.
To learn more about radius of curvature:
https://brainly.com/question/30106468
#SPJ11
How far from a wire carrying a current of 5 Amps is a second, parallel wire with a a current of 10 Amps, if the Magnetic Force of wire 1 on wire 2 is 3.6 x 10-2 N and each wire is 36 meters long. Include a picture and all 3 vectors on both wires,
If the Magnetic Force of wire 1 on wire 2 is 3.6 x 10-2 N and each wire is 36 meters long then, the two parallel wires must be 2 meters apart from each other.
The formula to calculate the magnetic force between two parallel conductors is given as : F = µI₁I₂l / 2πd
where
F is the magnetic force
µ is the permeability of free space, µ = 4π x 10-7 TmA-1
I₁ is the current flowing in the first conductor
I₂ is the current flowing in the second conductor
l is the length of the conductors
d is the distance between the conductors
In the given problem, we have :
I₁ = 5 Amps ; I₂ = 10 Amps ; F = 3.6 x 10-2 N ; l = 36 meters
The value of permeability of free space, µ = 4π x 10-7 TmA-1
We can rearrange the above formula to find the value of d as : d = µI₁I₂l / 2πF
Substituting the given values, we get, d= 2m
Therefore, the two parallel wires must be 2 meters apart from each other.
To learn more about current :
https://brainly.com/question/1100341
#SPJ11