Consider the following. y = 2x3 – 24x2 + 7 (a) Find the critical values of the function. (Enter your answers as a comma-separated list.) X = x (b) Make a sign diagram and determine the relative maxi

Answers

Answer 1

The critical values of the function are x = 0 and x = 8.

to find the critical values of the function y = 2x³ - 24x² + 7, we need to find the values of x where the derivative of the function is equal to zero or does not exist.

(a) find the critical values of the function:

step 1: calculate the derivative of the function y with respect to x:

y' = 6x² - 48x

step 2: set the derivative equal to zero and solve for x:

6x² - 48x = 0

6x(x - 8) = 0

setting each factor equal to zero:

6x = 0 -> x = 0

x - 8 = 0 -> x = 8 (b) make a sign diagram and determine the relative extrema:

to determine the relative extrema, we need to evaluate the sign of the derivative on different intervals separated by the critical values.

sign diagram:

|---|---|---|

-∞   0   8   ∞

evaluate the derivative on each interval:

for x < 0: choose x = -1 (any value less than 0)

y' = 6(-1)² - 48(-1) = 54

since the derivative is positive (+) on this interval, the function is increasing.

for 0 < x < 8: choose x = 1 (any value between 0 and 8)

y' = 6(1)² - 48(1) = -42

since the derivative is negative (-) on this interval, the function is decreasing.

for x > 8: choose x = 9 (any value greater than 8)

y' = 6(9)² - 48(9) = 270

since the derivative is positive (+) on this interval, the function is increasing.

from the sign diagram and the behavior of the derivative, we can determine the relative extrema:

- there is a relative maximum at x = 0.

- there are no relative minima.

- there is a relative minimum at x = 8.

note that we can confirm these relative extrema by checking the concavity of the function and observing the behavior around these critical points.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11


Related Questions

Let s(t) v(t) = Where does the velocity equal zero? t = and t = Find a function for the acceleration of the particle. a(t) = 6t³ + 54t² + 144t be the equation of motion for a particle. Find a function for the velocity.

Answers

The function for acceleration is a(t) = 6t³ + 54t² + 144t.

To find where the velocity is equal to zero, we need to solve the equation v(t) = 0. Given that the velocity function v(t) is not provided in the question, we'll have to integrate the given acceleration function to obtain the velocity function.

To find the velocity function v(t), we integrate the acceleration function a(t):

v(t) = ∫(6t³ + 54t² + 144t) dt

Integrating term by term:

v(t) = 2t⁴ + 18t³ + 72t² + C

Now, to find the specific values of t for which the velocity is equal to zero, we can set v(t) = 0 and solve for t:

0 = 2t⁴ + 18t³ + 72t² + C

Since C is an arbitrary constant, it does not affect the roots of the equation. Hence, we can ignore it for this purpose.

Now, let's find the function for acceleration a(t). It is given as a(t) = 6t³ + 54t² + 144t.

Therefore, the function for acceleration is a(t) = 6t³ + 54t² + 144t.

To know more about integrals, visit the link : https://brainly.com/question/30094386

#SPJ11




3 g(x, y) = cos(TIVI) + 2-y 2. Calculate the instantaneous rate of change of g at the point (4,1, 2) in the direction of the vector v = (1,2). 3. In what direction does g have the maximum directional

Answers

To calculate the instantaneous rate of change of the function g(x, y) at the point (4, 1, 2) in the direction of the vector v = (1, 2), we can find the dot product of the gradient of g at that point and the unit vector in the direction of v.

Additionally, to determine the direction in which g has the maximum directional derivative at (4, 1, 2), we need to find the direction in which the gradient vector of g is pointing.

To calculate the instantaneous rate of change of g at the point (4, 1, 2) in the direction of the vector v = (1, 2), we first find the gradient of g. The gradient of g(x, y) is given by (∂g/∂x, ∂g/∂y), which represents the rate of change of g with respect to x and y. We evaluate the partial derivatives of g with respect to x and y, and then evaluate them at the point (4, 1, 2) to find the gradient vector.

Once we have the gradient vector, we normalize the vector v = (1, 2) to obtain a unit vector in the direction of v. Then, we calculate the dot product between the gradient vector and the unit vector to find the instantaneous rate of change of g in the direction of v.

To determine the direction in which g has the maximum directional derivative at (4, 1, 2), we look at the direction in which the gradient vector of g points. The gradient vector points in the direction of the steepest increase of g. Therefore, the direction of the gradient vector represents the direction in which g has the maximum directional derivative at (4, 1, 2).

Learn more about derivatives here:

https://brainly.com/question/29144258

#SPJ11

thumbs up for both
4y Solve the differential equation dy da >0 Find an equation of the curve that satisfies dy da 88yz10 and whose y-intercept is 2.

Answers

An equation of the curve that satisfies the differential equation and has a y-intercept of 2 is a = (1/(512*792))y⁹ - 1/(792y⁹).

To solve the given differential equation dy/da = 88yz¹⁰ and find an equation of the curve that satisfies the equation and has a y-intercept of 2, we can use the method of separation of variables.

Separating the variables and integrating, we get:

1/y¹⁰ dy = 88z¹⁰da.

Integrating both sides with respect to their respective variables, we have:

∫(1/y¹⁰) dy = ∫(88z¹⁰) da.

Integrating the left side gives:

-1/(9y⁹) = 88a + C1, where C1 is the constant of integration.

Simplifying the equation, we have:

-1 = 792y⁹a + C1y⁹.

To find the value of the constant of integration C1, we use the given information that the curve passes through the y-intercept (a = 0, y = 2). Substituting these values into the equation, we get:

-1 = 0 + C1(2⁹),

-1 = 512C1.

Solving for C1, we find:

C1 = -1/512.

Substituting C1 back into the equation, we have:

-1 = 792y⁹a - (1/512)y⁹.

Simplifying further, we get:

792y⁹a = (1/512)y⁹ - 1.

Dividing both sides by 792y^9, we obtain:

a = (1/(512*792))y⁹ - 1/(792y⁹).

So, an equation of the curve that satisfies the differential equation and has a y-intercept of 2 isa = (1/(512*792))y⁹- 1/(792y⁹).

To learn more about differential equation

https://brainly.com/question/14926412

#SPJ11

Match the numbers to the letter. Choose the best option.
A, B are events defined in the same sample space S.

1. that neither of the two events occurs, neither A nor B, corresponds to

2. the complement of A corresponds to

3. If it is true that P(A given B)=0, then A and B are events

4. The union between A and B is:
-------------------------------------------------------------------

a. both happen at the same time
b. that only happens b
c. that the complement of the intersection A and B occurs
d. the complement of A U B occurs
e. a doesnt occur
F. mutually exclusive events
g. that at least one of the events of interest occurs
h. independent events

Answers

The descriptions to the corresponding letters for events A and B are

1. c. that the complement of the intersection A and B occurs

2. b. that only happens to B

3. F. mutually exclusive events

4. d. the complement of A U B occurs

Match the descriptions to the corresponding letters for events A and B.1. Which event corresponds to the occurrence of neither A nor B?2. What does the complement of event A represent?3. If P(A given B) is 0, what type of events are A and B?4. What is the event that represents the union of events A and B?

1. The union between A and B is: g. that at least one of the events of interest occurs.

2. The complement of A corresponds to h. independent events.

3. If it is true that P(A given B)=0, then A and B are events F. mutually exclusive events.

4. The union between A and B is: d. the complement of A U B occurs.

1. The union between A and B represents the event where at least one of the events A or B occurs.

2. The complement of event A refers to the event where A does not occur.

3. If the conditional probability P(A given B) is 0, it means that A and B are mutually exclusive events, meaning they cannot occur at the same time.

4. The union between A and B corresponds to the event where neither A nor B occurs, which is the complement of A U B.

Learn more about letters

brainly.com/question/13943501

#SPJ11

Suppose that Newton's method is used to locate a root of the equation /(x) =0 with initial approximation x1 = 3. If the second approximation is found to be x2 = -9, and the tangent line to f(x) at x = 3 passes through the point (13,3), find (3) antan's method with initial annroximation 2 to find xz, the second approximation to the root of

Answers

The second approximation, x2, in Newton's method to find a root of the equation f(x) = 0 is -9. Given that the tangent line to f(x) at x = 3 passes through the point (13, 3), we can find the second approximation, x3, using the equation of the tangent line.

In Newton's method, the formula for finding the next approximation, xn+1, is given by xn+1 = xn - f(xn)/f'(xn), where f'(xn) represents the derivative of f(x) evaluated at xn. Since the second approximation, x2, is given as -9, we can find the derivative f'(x) at x = 3 by using the point-slope form of a line. The slope of the tangent line passing through the points (3, f(3)) and (13, 3) is (f(3) - 3) / (3 - 13) = (0 - 3) / (-10) = 3/10. Therefore, f'(3) = 3/10.

Using the formula for xn+1, we can find x3:

x3 = x2 - f(x2)/f'(x2) = -9 - f(-9)/f'(-9).

Without the specific form of the equation f(x) = 0, we cannot determine the exact value of x3. To find x3, we would need to evaluate f(-9) and f'(-9) using the given equation or additional information about the function f(x).

Learn more about point-slope here:

https://brainly.com/question/837699

#SPJ11




Let f (x) be the function 4x-1 for x < -1, f (x) = {ax +b for – 15xsį, 2x-1 for x > Find the value of a, b that makes the function continuous. (Use symbolic notation and fractions where needed.)

Answers

The values of a and b that make the function f(x) continuous are a = 5/3 and b = -10/3.

let's consider the left-hand side of the function:

For x < -1, we have f(x) = 4x - 1.

Now, let's consider the right-hand side of the function:

For x > 2, we have f(x) = 2x - 1.

To make the function continuous at x = -1, we set:

4(-1) - 1 = a(-1) + b

-5 = -a + b ---(1)

To make the function continuous at x = 2, we set:

2(2) - 1 = a(2) + b

3 = 2a + b ---(2)

We now have a system of two equations (1) and (2) with two unknowns (a and b).

We can solve this system of equations to find the values of a and b.

Multiplying equation (1) by 2 and subtracting equation (2), we get:

-10 = -2a + 2b - (2a + b)

-10 = -4a + b

b = 4a - 10 ---(3)

Substituting equation (3) into equation (1):

-5 = -a + 4a - 10

-5 = 3a - 10

a = 5/3

Substituting the value of a into equation (3):

b = 4(5/3) - 10

b = -10/3

To learn more on Functions click:

https://brainly.com/question/30721594

#SPJ1

the test statistic for a two-sided significance test for a population mean is z = -2.12. what is the corresponding p-value?

Answers

The corresponding p-value for the given test statistic of z = -2.12 in a two-sided significance test for a population mean is approximately 0.034.

To calculate the p-value, we need to find the area under the standard normal curve that is more extreme than the observed test statistic. Since the test is two-sided, we consider both tails of the distribution.

The test statistic of z = -2.12 corresponds to an area of approximately 0.017 in the left tail and 0.017 in the right tail.

To obtain the p-value, we sum the areas in both tails. In this case, the p-value is approximately 0.017 + 0.017 = 0.034.

This means that if the null hypothesis is true, there is a 3.4% chance of observing a test statistic as extreme as the one calculated or more extreme.

If we use a significance level (α) of 0.05, since the p-value (0.034) is less than α, we would reject the null hypothesis and conclude that there is evidence of a significant difference in the population mean.

Learn more about null hypothesis here:

https://brainly.com/question/29387900

#SPJ11

please show all work
Evaluate the integral. Show your work for full credit. A. . La x sin x cos x dx B. 2x3 + x2 - 21x + 24 dac 22 + 2x - 8

Answers

The value of the integral is [tex](1/2) x sin^2(x) - (1/4) x + (1/8) sin(2x) + C.[/tex]

The value of the integral is[tex](1/2)x^4 + (1/3)x^3 - (21/2)x^2 + 24x + C.[/tex]

A. To evaluate the integral ∫x sin(x) cos(x) dx, we can use integration by parts.

Let u = x

And dv = sin(x) cos(x) dx

Taking the derivatives and integrals, we have:

du = dx

And v = ∫sin(x) cos(x) dx = (1/2) [tex]sin^2(x)[/tex]

Now, applying the integration by parts formula:

∫x sin(x) cos(x) dx = uv - ∫v du

= x × (1/2) [tex]sin^2(x)[/tex] - ∫(1/2) [tex]sin^2(x)[/tex]dx

= (1/2) x [tex]sin^2(x)[/tex] - (1/2) ∫[tex]sin^2(x)[/tex] dx

To evaluate the remaining integral, we can use the identity [tex]sin^2(x)[/tex]= (1/2) - (1/2) cos(2x):

∫[tex]sin^2(x)[/tex] dx = ∫(1/2) - (1/2) cos(2x) dx

= (1/2) x - (1/4) sin(2x) + C

Substituting back into the original integral, we have:

∫x sin(x) cos(x) dx = (1/2) x [tex]sin^2(x)[/tex] - (1/2) [(1/2) x - (1/4) sin(2x)] + C

= (1/2) x [tex]sin^2(x)[/tex] - (1/4) x + (1/8) sin(2x) + C

Therefore, the value of the integral is (1/2) x [tex]sin^2(x)[/tex] - (1/4) x + (1/8) sin(2x) + C.

B. To evaluate the integral ∫[tex](2x^3 + x^2 - 21x + 24)[/tex] dx, we can simply integrate each term separately:

∫[tex](2x^3 + x^2 - 21x + 24) dx = (2/4)x^4 + (1/3)x^3 - (21/2)x^2 + 24x + C[/tex]

[tex]= (1/2)x^4 + (1/3)x^3 - (21/2)x^2 + 24x + C[/tex]

Therefore, the value of the integral is [tex](1/2)x^4 + (1/3)x^3 - (21/2)x^2 + 24x + C.[/tex]

Learn more about integral here:

https://brainly.com/question/31059545

#SPJ11








13. DETAILS SCALCET9 11.6.021. Use the Root Test to determine whether the series convergent or divergent. 00 n2 + 3 n=1 52 + 8 Identify ani Evaluate the following limit. lim va 00 n Select... Since li

Answers

the limit is 1, which means that the series does not give us any conclusive information regarding convergence or divergence using the Root Test. We would need to employ another convergence test to determine the nature of the series.

To determine whether the series converges or diverges using the Root Test, we need to evaluate the following limit:

lim (n→∞) |a_n|^(1/n)

The series in question is given as:

Σ (n=1 to ∞) ((n^2 + 3n)/(52 + 8n))

To apply the Root Test, we need to find the limit of the absolute value of the nth term raised to the power of 1/n. Let's calculate it:

lim (n→∞) |((n^2 + 3n)/(52 + 8n))|^(1/n)

We simplify the expression inside the absolute value by dividing both the numerator and denominator by n:

lim (n→∞) |(n + 3)/8|^(1/n)

Since the limit is in the form 1^∞, we can rewrite it as:

lim (n→∞) e^(ln |(n + 3)/8|^(1/n))

Using the properties of logarithms, we can rewrite the expression inside the exponential as:

lim (n→∞) e^((1/n) * ln |(n + 3)/8|)

Taking the natural logarithm and applying the limit:

ln (lim (n→∞) e^((1/n) * ln |(n + 3)/8|))

ln (lim (n→∞) ((n + 3)/8)^(1/n))

Now we can evaluate the limit:

lim (n→∞) ((n + 3)/8)^(1/n)

Since the exponent tends to zero as n approaches infinity, we have:

lim (n→∞) ((n + 3)/8)^(1/n) = 1

Therefore, the limit is 1, which means that the series does not give us any conclusive information regarding convergence or divergence using the Root Test. We would need to employ another convergence test to determine the nature of the series.

To know more about Series related question visit:

https://brainly.com/question/30457228

#SPJ11

Exponential decay can be modeled by the function y = yoekt where k is a positive constant, yo is the [Select] and tis [Select] [Select] time initial amount decay constant In this situation, the rate o

Answers

Exponential decay can be modeled by the function y = yoekt, where k is a positive constant, yo is the initial amount, and t represents time. The decay constant determines the rate at which the quantity decreases over time.

Exponential decay is a mathematical model commonly used to describe situations where a quantity decreases over time. It is characterized by an exponential function of the form y = yoekt, where yo represents the initial amount or value of the quantity, k is a positive constant known as the decay constant, and t represents time.

The decay constant, k, determines the rate at which the quantity decreases. A larger value of k indicates a faster decay rate, meaning the quantity decreases more rapidly over time. Conversely, a smaller value of k corresponds to a slower decay rate.

The initial amount, yo, represents the value of the quantity at the beginning of the decay process or at t = 0. As time progresses, the quantity decreases exponentially according to the decay constant.

Overall, the exponential decay model y = yoekt provides a mathematical representation of how a quantity decreases over time, with the decay constant determining the rate of decay.

Learn more about Exponential decay here:

https://brainly.com/question/2193799

#SPJ11

Need help with this problem please make sure to answer with what it says on the top (the instructions)

Answers

The points (-4, 4), (-2, 1), (0, 0), (2, 1), and (4, 4) represents a quadratic function

What is a quadratic function?

A quadratic function is a type of mathematical function that can be defined by an equation of the form

f(x) = ax² + bx + c

where

a, b, and c are constants and

x is the variable.

The term "quadratic" refers to the presence of the x² term, which is the highest power of x in the equation.

Quadratic functions are characterized by their curved graph shape, known as a parabola. the parabola can open upward or downward depending on the sign of the coefficient a.

In this case the curve opens upward and the graph is attached

Learn more about quadratic function at

https://brainly.com/question/1214333

#SPJ1

If the equation F(x,y,z) = 0 determines z as a differentiable function of x and y, then, at the points where Fz60, the following equations are true. = dz Ex дz Fy and ox FZ ду Fz Use these equations to find the values of dz/dx and dz/dy at the given point. 22 - 5xy + 3y2 + 3y3 – 195 = 0, (3,4,3) = dz 2 = (Type an integer or a simplified fraction.) дх |(3,4,3)

Answers

Using the given equations Fz = 0, Fy = dz/dx, and Fz = dz/dy, we can find the values of dz/dx and dz/dy at the point (3,4,3) for the equation F(x,y,z) = 22 - 5xy + 3y^2 + 3y^3 - 195 = 0.

Given the equation F(x,y,z) = 22 - 5xy + 3y^2 + 3y^3 - 195 = 0, we need to find dz/dx and dz/dy at the point (3,4,3).

We start by differentiating the equation with respect to z:

Fz = 0.

Next, we use the equations Fy = dz/dx and Fz = dz/dy to find the values of dz/dx and dz/dy.

At the point (3,4,3), we substitute the values into the equations:

Fy = dz/dx |(3,4,3),

Fz = dz/dy |(3,4,3).

Evaluating these equations at (3,4,3), we can find the values of dz/dx and dz/dy. However, without the specific expressions for Fy and Fz, it is not possible to provide the exact numerical values or simplified fractions for dz/dx and dz/dy at (3,4,3) in this case.

Learn more about simplified fractions here:

https://brainly.com/question/18435083

#SPJ11

You must present the procedure and the answer correct each question in a clear way. 1- Maximize the function Z = 2x + 3y subject to the conditions: x > 4 y5 (3x + 2y < 52 2- The number of cars traveling on PR-52 daily varies through the years.

Answers

We may use linear programming to maximise the function Z = 2x + 3y if x > 4, y > 5, and 3x + 2y < 52. Here's how:

Step 1: Determine the objective function and constraints:

Objective function Z = 2x + 3y

Constraints:

1: x > 4

(2) y > 5.

3x + 2y < 52 (3rd condition)

Step 2: Graph the viable region:

Graph the equations and inequalities to find the viable zone, which meets all restrictions.

For the condition x > 4, draw a vertical line at x = 4 and shade the area to the right.

For the condition y > 5, draw a horizontal line at y = 5 and shade the area above it.

Plot the line 3x + 2y = 52 and shade the space below it for 3x + 2y 52.

The feasible zone is the intersection of the three conditions' shaded regions.

Step 3: Locate corner points:

Find the viable region's vertices' coordinates. Boundary line intersections are these points.

Step 4: Evaluate the objective function at each corner point:

At each corner point, calculate the objective function Z = 2x + 3y.

Step 5: Determine the maximum value:

Choose the corner point with the highest Z value. Z's maximum value is that.

The second half of your inquiry looks incomplete. Please let me know more about PR-52's car count variation.

To know more about linear programming

https://brainly.com/question/14309521

#SPJ11

question:-

You must present the procedure and the answer correct each question in a clear way. 1- Maximize the function Z = 2x + 3y subject to the conditions: x > 4 y5 (3x + 2y < 52 2- The number of cars traveling on PR-52 daily varies through the years. Suppose the amount of passing cars as a function of t is A(t) = 32.4e-0.3526,0 st 54 where t are the years since 2017 and Alt) represents thousands of cars. Determine the number of flowing cars in the years 2017 (t = 0). 2019 (t - 2)y 2020 (t = 3).

For the function f(x) = 3x3 - 5x² + 5x + 1, find f''(x). Then find f''(0) and f''(3). f''(x) = 0 ) Select the correct choice below and fill in any answer boxes in your choice. O A. f''(0) = (Simplify your answer.) B. f''() is undefined. Select the correct choice below and fill in any answer boxes in your choice. O A. f''(3)= (Simplify your answer.) B. f''(3) is undefined.

Answers

The values of function f''(0) and f''(3) are:

f''(0) = -10f''(3) = 44

To find the second derivative of the function f(x) = 3x^3 - 5x^2 + 5x + 1, we differentiate it twice.

First, find the first derivative:

f'(x) = 9x^2 - 10x + 5

Then, differentiate the first derivative to find the second derivative:

f''(x) = d/dx(9x^2 - 10x + 5)

= 18x - 10

Now we can find f''(0) and f''(3) by substituting x = 0 and x = 3 into the second derivative.

a) f''(0):

f''(0) = 18(0) - 10

= -10

b) f''(3):

f''(3) = 18(3) - 10

= 44

Learn more about function at https://brainly.com/question/19393397

#SPJ11

find both the opposite, or additive inverse, and the reciprocal, or the multiplicative inverse, of the following number: 25

Answers

The opposite, or additive inverse, of 25 is -25, and the reciprocal, or multiplicative inverse, of 25 is 1/25.

The opposite, or additive inverse, of a number is the value that, when added to the original number, gives a sum of zero. In this case, the opposite of 25 is -25 because 25 + (-25) equals zero. The opposite of a number is the number with the same magnitude but opposite sign.

The reciprocal, or multiplicative inverse, of a number is the value that, when multiplied by the original number, gives a product of 1. The reciprocal of 25 is 1/25 because 25 * (1/25) equals 1. The reciprocal of a number is the number that, when multiplied by the original number, results in the multiplicative identity, which is 1.

In summary, the opposite, or additive inverse, of 25 is -25, and the reciprocal, or multiplicative inverse, of 25 is 1/25. The opposite of a number is the value with the same magnitude but opposite sign, while the reciprocal of a number is the value that, when multiplied by the original number, yields a product of 1.

Learn more about additive inverse here:

https://brainly.com/question/29067788

#SPJ11

Given and ƒ'(−3) = −2 and f(−3) = 3. Find f'(x) = and find f(3) = = Note: You can earn partial credit on this problem. ƒ"(x) = 7x +3

Answers

The value of derivative f'(x)  is ƒ'(x) = (7/2)x^2 + 3x + C. f(3)= 49.

To find the derivative of ƒ(x), denoted as ƒ'(x), we need to integrate the given second derivative function, ƒ"(x) = 7x + 3.

Let's integrate ƒ"(x) with respect to x to find ƒ'(x): ∫ (7x + 3) dx

Applying the power rule of integration, we get: (7/2)x^2 + 3x + C

Here, C is the constant of integration. So, ƒ'(x) = (7/2)x^2 + 3x + C.

Now, we are given that ƒ'(-3) = -2. We can use this information to solve for the constant C. Let's substitute x = -3 and ƒ'(-3) = -2 into the equation ƒ'(x) = (7/2)x^2 + 3x + C:

-2 = (7/2)(-3)^2 + 3(-3) + C

-2 = (7/2)(9) - 9 + C

-2 = 63/2 - 18/2 + C

-2 = 45/2 + C

C = -2 - 45/2

C = -4/2 - 45/2

C = -49/2

Therefore, the equation for ƒ'(x) is: ƒ'(x) = (7/2)x^2 + 3x - 49/2.

To find ƒ(3), we need to integrate ƒ'(x). Let's integrate ƒ'(x) with respect to x to find ƒ(x): ∫ [(7/2)x^2 + 3x - 49/2] dx

Applying the power rule of integration, we get:

(7/6)x^3 + (3/2)x^2 - (49/2)x + C ,  Again, C is the constant of integration.

Now, we are given that ƒ(-3) = 3. We can use this information to solve for the constant C. Substituting x = -3 and ƒ(-3) = 3 into the equation ƒ(x) = (7/6)x^3 + (3/2)x^2 - (49/2)x + C:

3 = (7/6)(-3)^3 + (3/2)(-3)^2 - (49/2)(-3) + C

3 = (7/6)(-27) + (3/2)(9) + (49/2)(3) + C

3 = -63/6 + 27/2 + 147/2 + C

3 = -63/6 + 81/6 + 294/6 + C

3 = 312/6 + C

3 = 52 + C

C = 3 - 52

C = -49

Therefore, the equation for ƒ(x) is: ƒ(x) = (7/6)x^3 + (3/2)x^2 - (49/2)x - 49.

To know more about derivative refer here:

https://brainly.com/question/29144258#

#SPJ11

c) Two cars start driving from the same point. One drives west at 80 km/h and the other drives southwest at 100 km/h. How fast is the distance between the cars changing after 15 minutes? Give your ans

Answers

To determine the rate at which the distance between two cars is changing, given that one is traveling west at 80 km/h and the other is driving southwest at 100 km/h, we can use the concept of relative velocity. After 15 minutes, the distance between the cars is changing at a rate of approximately 52.53 km/h.

Let's consider the position of the two cars at a given time t. The first car is traveling west at a speed of 80 km/h, and the second car is driving southwest at 100 km/h. We can break down the second car's velocity into two components: one along the west direction and the other along the south direction. The westward component of the second car's velocity is [tex]100km/h \times cos45^{\circ}[/tex], where [tex]cos(45^{\circ})[/tex] is the cosine of the angle between the southwest direction and the west direction.

The southward component of the second car's velocity is [tex]100km/hr \times sin(45^{\circ})}[/tex], where [tex]sin(45^{\circ})[/tex] is the sine of the same angle. Therefore, the relative velocity between the two cars is the difference between their velocities along the west direction: [tex](80-100)km/hr \times cos(45^{\circ})[/tex]. This value represents the rate at which the distance between the cars is changing. After 15 minutes (which is equivalent to 0.25 hours), we can substitute the values into the equation.

By calculating the cosine of [tex]45^{\circ}[/tex] as [tex]\frac{1}{\sqrt2}\approx 0.7071[/tex], we can find that the relative velocity is approximately [tex](80-100)km/hr \times 0.7071 \approx -52.53km/hr[/tex]. The negative sign indicates that the distance between the cars is decreasing. Therefore, after 15 minutes, the distance between the cars is changing at a rate of approximately 52.53 km/h.

Learn more about cosine here:

https://brainly.com/question/4599903

#SPJ11

Suppose that f(x, y) = x² - xy + y² - 3x + 3y with x² + y² ≤9. 1. Absolute minimum of f(x, y) is 2. Absolute maximum is

Answers

the absolute minimum of f(x, y) is 2, which occurs at the critical point (5, 1).

What is Derivatives?

A derivative is a contract between two parties which derives its value/price from an underlying asset.

To find the absolute maximum of the function f(x, y) = x² - xy + y² - 3x + 3y over the region defined by x² + y² ≤ 9, we need to consider the critical points and the boundary of the region.

First, let's find the critical points by taking the partial derivatives of f(x, y) with respect to x and y and setting them equal to zero:

∂f/∂x = 2x - y - 3 = 0

∂f/∂y = -x + 2y + 3 = 0

Solving these equations simultaneously, we get:

2x - y - 3 = 0 ---> y = 2x - 3

-x + 2y + 3 = 0 ---> x = 2y + 3

Substituting the second equation into the first equation:

y = 2(2y + 3) - 3

y = 4y + 6 - 3

3y = 3

y = 1

Plugging y = 1 into the second equation:

x = 2(1) + 3

x = 2 + 3

x = 5

Therefore, the critical point is (x, y) = (5, 1).

Next, we need to consider the boundary of the region x² + y² ≤ 9, which is a circle with radius 3 centered at the origin (0, 0). To find the maximum and minimum values on the boundary, we can use the method of Lagrange multipliers.

Let g(x, y) = x² + y² - 9 be the constraint function. We set up the following equations:

∇f = λ∇g,

x² - xy + y² - 3x + 3y = λ(2x, 2y),

x² - xy + y² - 3x + 3y = 2λx,

-x² + xy - y² + 3x - 3y = 2λy,

x² + y² - 9 = 0.

Simplifying these equations, we have:

x² - xy + y² - 3x + 3y = 2λx,

-x² + xy - y² + 3x - 3y = 2λy,

x² + y² = 9.

Adding the first two equations, we get:

2x² - 2x + 2y² - 2y = 2λx + 2λy,

x² - x + y² - y = λx + λy,

x² - (1 + λ)x + y² - (1 + λ)y = 0.

We can rewrite this equation as:

(x - (1 + λ)/2)² + (y - (1 + λ)/2)² = (1 + λ)²/4.

Since x² + y² = 9 on the boundary, we can substitute this into the equation:

(1 + λ)²/4 = 9,

(1 + λ)² = 36,

1 + λ = ±6,

λ = 5 or λ = -7.

For λ = 5, we have:

x - (1 + 5)/2 = 0,

x = 3,

y - (1 + 5)/2 = 0,

y = 3.

For λ = -7, we have:

x - (1 - 7)/2 = 0,

x = 3,

y - (1 - 7)/2 = 0,

y = -3.

So, on the boundary, we have two points (3, 3) and (3, -3).

Now, we evaluate the function f(x, y) at the critical point and the points on the boundary:

f(5, 1) = (5)² - (5)(1) + (1)² - 3(5) + 3(1) = 2,

f(3, 3) = (3)² - (3)(3) + (3)² - 3(3) + 3(3) = 0,

f(3, -3) = (3)² - (3)(-3) + (-3)² - 3(3) + 3(-3) = -24.

Therefore, the absolute minimum of f(x, y) is 2, which occurs at the critical point (5, 1). However, there is no absolute maximum on the given region because the values of f(x, y) are unbounded as we move away from the critical point and the boundary points.

To learn more about Derivatives from the given link

https://brainly.com/question/23819325

#SPJ4

Which of these functions are even? A. f(x)=sin(x)/x B.
f(x)=sin(2x) C. f(x)=csc(x^2) D. f(x)=cos(2x)/x E.
f(x)=cos(x)+sin(x) F. f(x)=cos(2x)

Answers

Out of the given functions, only function F, f(x) = cos(2x), is even.

To determine whether a function is even, we need to check if it satisfies the property f(x) = f(-x) for all x in its domain. If a function satisfies this property, it is even.

Let's examine each given function:

A. f(x) = sin(x)/x:

This function is not even because f(x) = f(-x) does not hold for all values of x. For example, f(1) is not equal to f(-1).

B. f(x) = sin(2x):

This function is not even because f(x) = f(-x) does not hold for all values of x. For example, f(π) is not equal to f(-π).

C. f(x) = csc(x^2):

This function is not even because f(x) = f(-x) does not hold for all values of x. The cosecant function is an odd function, so it can't satisfy the property of evenness.

D. f(x) = cos(2x)/x:

This function is not even because f(x) = f(-x) does not hold for all values of x. For example, f(π) is not equal to f(-π).

E. f(x) = cos(x) + sin(x):

This function is not even because f(x) = f(-x) does not hold for all values of x. For example, f(π) is not equal to f(-π).

F. f(x) = cos(2x):

This function is even because f(x) = f(-x) holds for all values of x. If we substitute -x into the function, we get cos(2(-x)) = cos(-2x) = cos(2x), which is equal to f(x).

Among the given options only function F is even.

To know more about functions refer here:

https://brainly.com/question/23446734#

#SPJ11

Let f(x) = ln(16x14 – 17x + 50) f'(x) = Solve f'(x) = 0 No decimal entries allowed. Find exact solution. 2=

Answers

The exact solution for f'(x) = 0 is x = (17 / (16 * 14))¹/¹³..

To find the exact solution for f'(x) = 0 for the function f(x) = ln(16x¹⁴ – 17x + 50), we need to find the value of x that makes the derivative equal to zero.

First, we differentiate f(x) using the chain rule:

f'(x) = (1 / (16x¹⁴ – 17x + 50)) * (16 * 14x¹³ – 17).

To find the solution for f'(x) = 0, we set the derivative equal to zero and solve for x:

(1 / (16x¹⁴ – 17x + 50)) * (16 * 14x¹³ – 17) = 0.

Since the numerator can only be zero if the second factor is zero, we set 16 * 14x¹³ – 17 = 0.

16 * 14x¹³ = 17.

Dividing both sides by 16 * 14, we get:

x¹³= 17 / (16 * 14).

To find the exact solution, we can take the 13th root of both sides:

x = (17 / (16 * 14))¹/¹³.

To know more about derivative click on below link:

https://brainly.com/question/29020856#

#SPJ11

Which of the below is/are equivalent to the statement that a set of vectors (V1 , Vp} is linearly independent? Suppose also that A = [V Vz Vp]: a) A linear combination of V1, _. Yp is the zero vectorif and only if all weights in the combination are zero. b) The vector equation x1V + Xzlz XpVp =O has only the trivial solution c) There are weights, not allzero,that make the linear combination of V1, Vp the zero vector: d) The system with augmented matrix [A 0] has freewvariables: e) The matrix equation Ax = 0 has only the trivial solution: f) All columns of the matrix A are pivot columns.

Answers

Statement (b) is equivalent to the statement that a set of vectors (V1, Vp) is linearly independent.

To determine if a set of vectors (V1, Vp) is linearly independent, we need to consider various conditions.

Statement (a) states that a linear combination of V1, Vp is the zero vector if and only if all weights in the combination are zero. This condition is true for linearly independent sets, as no non-trivial linear combination of vectors can result in the zero vector.

Statement (b) asserts that the vector equation x1V1 + x2V2 + ... + x pVp = 0 has only the trivial solution, where x1, x2, ..., xp are the weights. This is precisely the definition of linear independence. If the only solution is the trivial solution (all weights being zero), then the set of vectors is linearly independent.

Statement (c) contradicts the definition of linear independence. If there exist weights, not all zero, that make the linear combination of V1, Vp equal to the zero vector, then the set of vectors is linearly dependent.

Statement (d) and (e) are equivalent and also represent linear independence. If the system with the augmented matrix [A 0] has no free variables or if the matrix equation Ax = 0 has only the trivial solution, then the set of vectors is linearly independent.

Statement (f) is also equivalent to linear independence. If all columns of the matrix A are pivot columns, it means that there are no redundant columns, and hence, the set of vectors is linearly independent.

Learn more about linear combination here:

https://brainly.com/question/30341410

#SPJ11

consider the problem of minimizing the function f(x, y) = x on the curve 9y2 x4 − x3 = 0 (a piriform). (a piriform). (a) Try using Lagrange multipliers to solve the problem.

Answers

Using Lagrange multipliers, the problem involves minimizing the function f(x, y) = x on the curve [tex]9y^2x^4 - x^3 = 0[/tex]. By setting up the necessary equations and solving them, we can find the values of x, y, and λ that satisfy the conditions and correspond to the minimum point on the curve.

The method of Lagrange multipliers is a technique used to find the minimum or maximum of a function subject to one or more constraints. In this case, we want to minimize the function f(x, y) = x while satisfying the constraint given by the curve equation [tex]9y^2x^4 - x^3 = 0[/tex]

To apply Lagrange multipliers, we set up the following equations:

∇f(x, y) = λ∇g(x, y), where ∇f(x, y) is the gradient of f(x, y), ∇g(x, y) is the gradient of the constraint function g(x, y) = [tex]9y^2x^4 -x^3[/tex], and λ is the Lagrange multiplier.

g(x, y) = 0, which represents the constraint equation.

By solving these equations simultaneously, we can find the values of x, y, and λ that satisfy the conditions. These values will correspond to the minimum point on the curve.

Learn more about Lagrange multipliers here:

https://brainly.com/question/30776684

#SPJ11

Explain why these maps are not linear with relevant working.
Explain why the following maps are not linear T: R→R, Tx = 3(x − 1). T : D[a, b] → R[0,¹], Tƒ = f(x)df.

Answers

The map T: R → R, Tx = 3(x − 1), and the map T: D[a, b] → R[0,¹], Tƒ = f(x)df, are not linear maps.

For the map T: R → R, Tx = 3(x − 1), it fails to satisfy the additivity property. When we add two vectors u and v, T(u + v) = 3((u + v) − 1), which does not equal T(u) + T(v) = 3(u − 1) + 3(v − 1). Therefore, the map is not linear.

For the map T: D[a, b] → R[0,¹], Tƒ = f(x)df, it fails to satisfy both additivity and homogeneity properties. Adding two functions ƒ(x) and g(x) would result in T(ƒ + g) = (ƒ + g)(x)d(x), which does not equal T(ƒ) + T(g) = ƒ(x)d(x) + g(x)d(x). Additionally, multiplying a function ƒ(x) by a scalar c would result in T(cƒ) = (cƒ)(x)d(x), which does not equal cT(ƒ) = c(ƒ(x)d(x)). Therefore, this map is also not linear.


To learn more about linear maps click here: brainly.com/question/31944828


#SPJ11

Define a sequence (an) with a1 = 2,
an+1 = pi/(4-an) . Determine whether
the sequence is convergent or not. If it converges, find the
limit.

Answers

The sequence (an) defined by a1 = 2 and an+1 = π/(4-an) does not converge since there is no limit that the terms approach.

We examine the recursive definition, indicating that each term is obtained by substituting the previous term into the formula an+1 = π/(4 - an).

Assuming convergence, we take the limit as n approaches infinity, leading to the equation L = π/(4 - L).

Solving the equation gives the quadratic L^2 - 4L + π = 0, with a negative discriminant.

With no real solutions, we conclude that the sequence (an) does not converge.

Therefore, the terms of the sequence do not approach a specific limit as n tends to infinity.

Learn more about sequence:

https://brainly.com/question/30262438

#SPJ11

10. Solve the differential equation: dy 10xy Sams such that y = 70 when = 0. Show all work.

Answers

The solution to the given differential equation with the initial condition y = 70 when x = 0 is y = 70e^(5x^2).

The given differential equation is:

dy/dx = 10xy

To solve this, we'll separate the variables and integrate both sides.

First, let's separate the variables:

dy/y = 10x dx

Now, we'll integrate both sides:

∫ (1/y) dy = ∫ 10x dx

Integrating, we get:

ln|y| = 5x^2 + C1

Where C1 is the constant of integration.

To find the particular solution, we'll use the initial condition y = 70 when x = 0.

Substituting these values into the equation, we get:

ln|70| = 5(0)^2 + C1

ln|70| = C1

So, the equation becomes:

ln|y| = 5x^2 + ln|70|

Combining the logarithms:

ln|y| = ln|70e^(5x^2)|

We can remove the absolute value by taking the exponential of both sides:

y = 70e^(5x^2)

Therefore, the solution to the given differential equation with the initial condition y = 70 when x = 0 is y = 70e^(5x^2).

Learn more about "differential equation":

https://brainly.com/question/1164377

#SPJ11

Find the intervals on which f is increasing and the intervals on which it is decreasing. 2 f(x) = 6 - X + 3x? Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice. A. The function is increasing on the open interval(s) and decreasing on the open interval(s) (Simplify your answers. Type your answers in interval notation. Use a comma to separate answers as needed.) B. The function is decreasing on the open interval(s). The function is never increasing. (Simplify your answer. Type your answer in interval notation. Use a comma to separate answers as needed.) C. The function is increasing on the open interval(s) 0. The function is never decreasing. (Simplify your answer. Type your answer in interval notation. Use a comma to separate answers as needed.) D. The function is never increasing nor decreasing.

Answers

To find the intervals on which [tex]f(x) = 6 - x + 3x[/tex]is increasing or decreasing, we need to analyze its derivative.

Taking the derivative of f(x) with respect to x, we get [tex]f'(x) = -1 + 3.[/tex]Simplifying, we have [tex]f'(x) = 2.[/tex]

Since the derivative is constant and positive (2), the function is always increasing on its entire domain.

Therefore, the answer is D. The function is never increasing nor decreasing.

learn more about;-  intervals here

https://brainly.com/question/11051767

#SPJ11

estimate ∫10cos(x2)dx∫01cos(x2)dx using (a) the trapezoidal rule and (b) the midpoint rule, each with n=4n=4. give each answer correct to five decimal places.

Answers

The estimates of ∫10cos(x²)dx and ∫01cos(x²)dx using the trapezoidal rule and the midpoint rule, each with n=4, are as follows:

(a) Trapezoidal rule estimate:

For ∫10cos(x²)dx:

Using the trapezoidal rule with n=4, we divide the interval [1, 0] into 4 subintervals of equal width: [1, 0.75], [0.75, 0.5], [0.5, 0.25], and [0.25, 0].

The estimate using the trapezoidal rule is 0.79789.

(b) Midpoint rule estimate:

For ∫10cos(x²)dx:

Using the midpoint rule with n=4, we divide the interval [1, 0] into 4 subintervals of equal width: [0.875, 0.625], [0.625, 0.375], [0.375, 0.125], and [0.125, 0].

The estimate using the midpoint rule is 0.86586.

For ∫01cos(x²)dx:

Using the trapezoidal rule with n=4, we divide the interval [0, 1] into 4 subintervals of equal width: [0, 0.25], [0.25, 0.5], [0.5, 0.75], and [0.75, 1].

The estimate using the trapezoidal rule is 0.73164.

Using the midpoint rule with n=4, we divide the interval [0, 1] into 4 subintervals of equal width: [0, 0.125], [0.125, 0.375], [0.375, 0.625], and [0.625, 0.875].

The estimate using the midpoint rule is 0.67679.

Please note that these estimates are correct to five decimal places.

Learn more about subintervals here: https://brainly.com/question/27258724

#SPJ11

00 4k - 1 - 2k - 1 7k 1 11 Σ k = 1 GlN 14 15 26 15 σB G8 12 Determine whether the series converges or diverges. 00 on Σ n = 1 2 + 135 O converges O diverges Use the Alternating Series Test to d

Answers

The series Σn=1 2 + 135 diverges according to the Alternating Series Test.

To determine whether the series converges or diverges, we can apply the Alternating Series Test. This test is applicable to series that alternate in sign, where each subsequent term is smaller in magnitude than the previous term.

In the given series, we have alternating terms: 2, -1, 7, -11, and so on. However, the magnitude of the terms does not decrease as we progress. The terms 2, 7, and 15 are increasing in magnitude, violating the condition of the Alternating Series Test. Therefore, we can conclude that the series Σn=1 2 + 135 diverges.

In conclusion, the given series diverges as per the Alternating Series Test, since the magnitudes of the terms do not decrease consistently.

To learn more about Alternating Series Test click here: brainly.com/question/30400869

#SPJ11

y= ae + be 32, where a, b ER is a solution to the differential equation above. Here's how to proceed: a. Let y = ae* + be32 Find y' and y', remembering that a, b are unknown constants, not variables.

Answers

The first derivative of [tex]y = ae^x + be^{32}[/tex] is [tex]y' = ae^x[/tex], and the second derivative is [tex]y'' = ae^x[/tex] where a and b are constants.

Let[tex]y = ae^x + be^{32}[/tex]. Taking the derivative of y with respect to x, we can find y' (the first derivative) and y'' (the second derivative):

[tex]y' = (a * e^x)' + (b * e^{32})' = ae^x + 0 = ae^x[/tex]

Now, let's calculate y'' by taking the derivative of y' with respect to x:

[tex]y'' = (ae^x)' = a(e^x)'[/tex]

Since the derivative of [tex]e^x[/tex] with respect to x is[tex]e^x[/tex], we can simplify it further:

[tex]y'' = a(e^x)' = ae^x[/tex]

Therefore, [tex]y' = ae^x and y'' = ae^x.[/tex]

Learn more about first derivative here:

https://brainly.com/question/10023409

#SPJ11

A supermarket sells two brands of​ coffee: brand A at​ $p per pound and brand B at​ $q per pound. The daily demand equations for brands A and B are given​ below, respectively​ (in pounds).
x​ = 200 - 7p + 4q
y​ = 300 + 3p - 5q
Find the daily revenue function​ R(p,q).
Evaluate: ​R(3​,1​) and​R(1​,3​).

Answers

The daily revenue when p = 3 and q = 1 is 841. R(3,1) = 841 and R(1,3) = 1,058 To find the daily revenue function R(p,q), we need to multiply the quantity of each brand sold by its respective price and sum them up.

Given the demand equations for brands A and B, we can express the revenue function as follows: R(p,q) = (p * x) + (q * y) Substituting the demand equations into the revenue function, we have: R(p,q) = p * (200 - 7p + 4q) + q * (300 + 3p - 5q)

Expanding and simplifying, we get: R(p,q) = 200p - 7p^2 + 4pq + 300q + 3pq - 5[tex]q^2[/tex] Rearranging terms and combining like terms, we obtain the daily revenue function:

R(p,q) =[tex]-7p^2 + 3pq - 5q^2 + 200p + 300q[/tex] Now, let's evaluate the daily revenue function R(p,q) at the given points: R(3,1) and R(1,3).For R(3,1), substitute p = 3 and q = 1 into the revenue function:

R(3,1) = -[tex]7(3)^2 + 3(3)(1) - 5(1)^2 + 200(3) + 300(1)[/tex]

R(3,1) = -63 + 9 - 5 + 600 + 300

R(3,1) = 841

Therefore, the daily revenue when p = 3 and q = 1 is 841.

For R(1,3), substitute p = 1 and q = 3 into the revenue function:

R(1,3) = [tex]-7(1)^2 + 3(1)(3) - 5(3)^2 + 200(1) + 300(3)[/tex]

R(1,3) = 1,058

Therefore, the daily revenue when p = 1 and q = 3 is 1,058. The daily revenue function R(p,q) represents the total revenue generated by selling brands A and B at prices p and q, respectively. The evaluation of R(p,q) at specific values of p and q provides the corresponding revenue at those price levels.

Know more about revenue function here:

https://brainly.com/question/30448930

#SPJ11

Other Questions
An approved EPA-registered hospital disinfectant is required for use when:a. tools are newb. clients request itb. tools are used to puncture the skind. tools come in contact with blood or body fluids Suppose all possible investment opportunities in the world are limited to the five stocks listed in the table below. What does the market portfolio consist of 9what are the portfolio weights)?Stock Price/share ($) Number of Shares Outstanding (millions)A 10 10B 20 12C 8 3D 50 1E 45 20 which of the following infix expressions corresponds to the given postfix expression? 3 5 4 2 3 6 / * - ^ 2 1 2.)(2pts) Consider the matrix A= 0 2 -2 0 Find a Jordan matrix J and an invertible matrix Q such that A=QJQ-1. which of the following solvents would you expect to find floating on top of a solution of waterWhich of the following solvents would you expect to be water-soluble?a. ethanolb. benzenec. acetoned. hexanee. isopropylamine When a small percentage decrease in price produces a larger percentage increase in quantity demanded, the demand is said to be:a.) plasticb.) elasticc. inelasticd.) spastice.) tragic please help ASAP! The owners of the resort want to expand and build a row of condos at the western base of the mountain. Because of the amount of snow, the area gets most winters, it is important to have the pitch (steepness) of the roof of each condo at least 60. To make the condos appealing to skiers and boarders, they want to model the condos after their cabins, but on a larger scale. The cabins have an A-line roof that forms an isosceles triangle as shown, with the base angles at 65. The base length is 8m. Note: the slant height is the length of the side of the roof. Hint: Lesson 4.03, pages 261 268 in the resource guide Diagram absied correctiv IME Part A What is the slant height of the roof of the cabin? Round to the nearest tenth of a meter. Part B The roofs of the condos to be built will have a base length of 10.6 m. What will the slant height of the roof be on one of the houses? Round to the nearest tenth of a meter. Cabin Condo 65 70" Appropriate work CONTACT THE ACTION DE NO Correct answer Kombed correcthy, jahel Styles KZoo Enterprises is considering a move to another country to produce and sell their snowshoes. An estimate of future sales, expenses, and tax rates for each country is below. Assume all sales and expenses were received/paid in cash. Snowbird Country Beachland Windy Country Hurricane Land Taxable sales 100,000 150,000 110,000 50,000 Deductible expenses 50,000 80,000 50,000 15,000 Non-deductible expenses 5,000 10,000 3,000 500 Tax rates 25% 30% 21% 5% Where should Kzoo expand their business, based on after-tax cash flow? 4. [-/1 Points] DETAILS Evaluate the limit L, given lim f(x) = -8 and lim g(x) = -1/15 f(x) lim x+c g(x) L = 5. [-/2 Points] DETAILS Find the limit: L (if it exists). If it does not exist, explain why who are the three famous Roman emperors The laboratory work surface should be wiped with disinfectant (Select all that apply) Check All That Apply - before beginning laboratory procedures. - after completing the lab activities. - after a spill of microorganisms. - whenever microbes are transferred from one medium to another. Plutarch is a historian writing about events centuries before. When he discusses Tiberiuss motives for acting, he considers evidence for several possibilities. Which one does he give the greatest weight, and why? Answer these please???????????????????????????? A pendulum has length l and period t. what is the length of a pendulum with a period of t/2?A. L/2B. 4LC. LD. L/4E. 2L Question 3 dx Find the particular solution of om - 2x + 5y = e-** given that y(0) = 0 and y'(o) day dx? e3= using the method of undetermined coefficients. [15] a stunt car moving at 13.3 m/s hits a solid wall. during the collision, a 6 kg loose spare helmet flies forward and strikes the dashboard. the helmet stops after being in contact with the dashboard for 0.0700 s. find the force exerted on the helmet by the dashboard. Which item describes the attributes of a picture window layout? The use of a border around the edge gives the content an organized feel. A large image with a headline above the vertical layout, followed by the body copy It is characterized by its extensive range of design elements, which create an active and dynamic layout. A tank of water in the shape of a cone is being filled with water at a rate of 12m3/sec. The base radius of the tank is 26 meters and the height of the tank is 8 meters. At what rate is the depth of the water in the tank changing when the radius of the top of the water is 10 meters? a 1980 kg truck is traveling north a 42 km/h turns east and accelerates to 57 km/h a) what is the change in the truck's kinetic energy? suppose there is a tax decrease. to stabilize output, the federal reserve could