Consider F and C below. F(x, y) = Sxy 1 + 9x2yj Cr(t) =

Answers

Answer 1

Without additional information, it is not possible to provide a more detailed analysis or calculate the exact values of the integrals.

The given functions are F(x, y) = ∫xy(1 + 9x^2y) dy and C(r, t) = ∮ r dt.

The function F(x, y) represents the integral of xy(1 + 9x^2y) with respect to y. This means that for each fixed value of x, we integrate the expression xy(1 + 9x^2y) with respect to y. The result is a new function that depends only on x. The integration process involves finding the antiderivative of the integrand and applying the fundamental theorem of calculus.

On the other hand, the function C(r, t) represents the line integral of r with respect to t. Here, r is a vector function that describes a curve in space. The line integral of r with respect to t involves evaluating the dot product between the vector r and the differential element dt along the curve. This type of integral is often used to calculate work or circulation along a curve.

In both cases, the expressions represent mathematical operations involving integration. The main difference is that F(x, y) represents a double integral, where we integrate with respect to one variable while treating the other as a constant. This results in a new function that depends on the variable of integration. On the other hand, C(r, t) represents a line integral along a curve, which involves integrating a vector function along a specific path.

To fully understand and evaluate these functions, we would need additional information such as the limits of integration or the specific curves or paths involved. Without this information, it is not possible to provide a more detailed analysis or calculate the exact values of the integrals.

To learn more about function, click here: brainly.com/question/11624077

#SPJ11


Related Questions

1 Consider the equation e' + x =2. This equation has a solution close to x=0. Determine the linear approximation, L(x), of the left-hand side of the equation about x=0. (2) b. Use 2(x) to approximate

Answers

The linear approximation, L(x), of the left-hand side of the equation e' + x = 2 about x=0 is L(x) = 1 + x. This approximation is obtained by considering the tangent line to the curve of the function e^x at x=0.

The slope of the tangent line is given by the derivative of e^x evaluated at x=0, which is 1. The equation of the tangent line is then determined using the point-slope form of a linear equation, with the point (0, 1) on the line. Therefore, the linear approximation L(x) is 1 + x. To use this linear approximation to approximate the value of e' + x near x=0, we can substitute x=2 into the linear approximation equation. Thus, L(2) = 1 + 2 = 3.

To learn more about linear approximation click here: brainly.com/question/30403460

#SPJ11

An investment project provides cash inflows of $10,800 in year 1; $9,560 in year 2; $10,820 in year 3; $7,380 in year 4 and $9,230 in year 5. What is the project payback period if the initial cost is $23,500?

Answers

The project payback period is 3.04 years for the given investment.

The investment project provides cash inflows of $10,800 in year 1; $9,560 in year 2; $10,820 in year 3; $7,380 in year 4 and $9,230 in year 5.

The initial cost is $23,500.

Calculate the project payback period. Project payback period. The payback period for an investment project is the amount of time required for the cash inflows from a project to recoup the investment cost.

The project payback period is given by the formula below: Project payback period = Initial investment cost / Annual cash inflow. Let's calculate the project payback period for this investment project. Projected cash inflows Year Cash inflows Total cash inflows 1$10,800 $10,800 2$9,560 $20,360 3$10,820 $31,180 4$7,380 $38,560 5$9,230 $47,790

We can see from the above table that it will take 3 years and some time to recoup the initial investment cost of $23,500. This is because the total cash inflows for 3 years equals $31,180.

Subtracting this total from the initial investment cost of $23,500, we get $7,680. Therefore, we have:Project payback period = Initial investment cost / Annual cash inflow= $7,680 / $7,380 = 1.04 years.

Therefore, the project payback period is 3.04 years.

Learn more about investment here:

https://brainly.com/question/13672301


#SPJ11

In which of the following tools would a normal or bell-shaped curve be expected if no special conditions are occurring? (x3)
a. flow chart
b. cause and effect diagram
c. check sheet
d. histogram

Answers

The tool in which a normal or bell-shaped curve would be expected if no special conditions are occurring is a histogram.

A histogram is a graphical representation of data that displays the distribution of a set of continuous data. It is a bar chart that shows the frequency of data within specific intervals or bins. When data is normally distributed, or follows a bell-shaped curve, it is expected that the majority of the data will fall within the middle bins of the histogram, with fewer data points at the extremes.


A flow chart is a tool used to diagram a process and is not typically associated with statistical data analysis. A cause and effect diagram, also known as a fishbone diagram or Ishikawa diagram, is used to identify and analyze the potential causes of a problem, but it does not involve the representation of data in the form of a histogram. A check sheet is a simple tool used to collect data and record occurrences of specific events or activities, but it does not provide a graphical representation of the data. In contrast, a histogram is a tool that is commonly used in statistical analysis to represent the distribution of data. It can be used to identify the shape of the distribution, such as whether it is symmetric or skewed, and to identify any outliers or unusual data points. A normal or bell-shaped curve is expected in a histogram when the data is normally distributed, meaning that the data follows a specific pattern around the mean value.

To know more about histogram visit ;-

https://brainly.com/question/16819077

#SPJ11

For the function z = 4x³ + 5y² - 8xy, find 88 11 正一 || ²(-1₁-3)= (Simplify your answer.) z(-1,-3) = ду (Simplify your answer.) əz əz 7 axay d (-1, -3), and 2(-1,-3).

Answers

The value of the function z = 4x³ + 5y² - 8xy at the point (-1, -3) is 88, and its partial derivatives with respect to x and y at the same point are 7 and -11, respectively.

To find the value of z at (-1, -3), we substitute x = -1 and y = -3 into the expression for z: z = 4(-1)³ + 5(-3)² - 8(-1)(-3) = 4 - 45 + 24 = 88. The partial derivative with respect to x, denoted as ∂z/∂x, represents the rate of change of z with respect to x while keeping y constant. Taking the partial derivative of z = 4x³ + 5y² - 8xy with respect to x gives 12x² - 8y. Substituting x = -1 and y = -3, we have ∂z/∂x = 12(-1)² - 8(-3) = 12 - 24 = -12. Similarly, the partial derivative with respect to y, denoted as ∂z/∂y, represents the rate of change of z with respect to y while keeping x constant. Taking the partial derivative of z = 4x³ + 5y² - 8xy with respect to y gives 10y - 8x. Substituting x = -1 and y = -3, we have ∂z/∂y = 10(-3) - 8(-1) = -30 + 8 = -22. Therefore, at the point (-1, -3), z = 88, ∂z/∂x = -12, and ∂z/∂y = -22.

Learn more about partial derivative here;

https://brainly.com/question/32554860

#SPJ11








AND FINALLY A TELEVISION COMPANY Acompany produces a special new type of TV. The company has foxed costs of $401,000, and it costs $1200 to produce each TV. The company projects that if it charges a p

Answers

The television company has fixed costs of $401,000, indicating the expenses that do not vary with the number of TVs produced. Additionally, it costs $1200 to produce each TV, which can be considered as the variable cost per unit.

To determine the projection for the selling price (p) that would allow the company to break even or cover its costs, we need to consider the total cost and the number of TVs produced.

Let's assume the number of TVs produced is represented by 'x'. The total cost (TC) can be calculated as follows:

TC = Fixed Costs + (Variable Cost per Unit * Number of TVs Produced)

TC = $401,000 + ($1200 * x)

To break even, the total cost should equal the total revenue generated from selling the TVs. The total revenue (TR) can be calculated as:

TR = Selling Price per Unit * Number of TVs Produced

TR = p * x

Setting the total cost equal to the total revenue and solving for the selling price (p):

$401,000 + ($1200 * x) = p * x

From here, you can solve the equation for p by rearranging the terms and isolating p. This selling price (p) will allow the company to break even or cover its costs, given the fixed costs and variable costs per unit.

Learn more about company projects here: brainly.com/question/31535166

#SPJ11

The scatter plot shows data for the average temperature in Chicago over a 15 day period. Two lines are drawn to fit the data.


Which line fits the data best? Why? Select your answers from the drop down lists.

Answers

The best fits line for the data is,

⇒ line p

We have to given that,

The scatter plot shows data for the average temperature in Chicago over a 15 day period. Two lines are drawn to fit the data.

Now, We know that;

A scatter plot is a set of points plotted on a horizontal and vertical axes. Scatter plots are useful in statistics because they show the extent of correlation, in between the values of observed quantities.

From the graph,

Two lines m and p are shown.

Since, Line m is away from the scatter plot.

Whereas, Line p mostly contain the points on scatter plot.

Hence, Line p is fits the data best.

To learn more about Scatter Plot visit:

brainly.com/question/6592115

#SPJ1

Suppose prior elections in a certain state indicated it is necessary for a candidate for governor to receive at least 80% of the vote in the northern section of the state to be elected. The incumbent governor is interested in assessing his chances of returning to office and plans to conduct a survey of 2,000 registered voters in the northern section of the state. Use the statistical hypothesis-testing procedure to assess the governor's chances of reelection. What is the z-value? a. 0.5026 b. 0.4974 c. 2.80 d. -2.80

Answers

To determine the z-value accurately, we would need the actual proportion of voters supporting the governor in the sample ([tex]\bar p[/tex]) and the assumed population proportion (p).

What is null hypothesis?

The null hypothesis is a type of hypothesis that explains the population parameter and is used to examine if the provided experimental data are reliable.

To assess the governor's chances of reelection, we need to conduct a statistical hypothesis test using the z-test.

Let's assume that the null hypothesis (H₀) is that the governor will receive 80% of the vote in the northern section of the state, and the alternative hypothesis (Hₐ) is that he will receive less than 80% of the vote.

Given that the governor plans to survey 2,000 registered voters in the northern section of the state, we need to determine the sample proportion ([tex]\bar p[/tex]) of voters who support the governor.

Next, we calculate the standard error (SE) using the formula:

SE = √(([tex]\bar p[/tex](1-[tex]\bar p[/tex]))/n)

Where:

- [tex]\bar p[/tex] is the sample proportion

- n is the sample size (2,000 in this case)

Once we have the standard error, we can calculate the z-value using the formula:

z = ([tex]\bar p[/tex] - p) / SE

Where:

- p is the assumed population proportion (80% in this case)

Finally, we compare the z-value to the critical value at the desired significance level (usually 0.05) to determine the statistical significance.

Given that we don't have the specific values for [tex]\bar p[/tex] and p, it is not possible to calculate the exact z-value without additional information. Therefore, none of the provided options (a, b, c, d) can be considered correct.

To determine the z-value accurately, we would need the actual proportion of voters supporting the governor in the sample ([tex]\bar p[/tex]) and the assumed population proportion (p).

Learn more about null hypothesis on:

https://brainly.com/question/28042334

#SPJ4

find an absolute maximum and minimum values of f(x)=(4/3)x^3 -
9x+1. on [0, 3]

Answers

The function [tex]\(f(x) = \frac{4}{3}x^3 - 9x + 1\)[/tex] has an absolute maximum and minimum values on the interval [tex]\([0, 3]\)[/tex]. The absolute maximum value is [tex]\(f(3) = -8\)[/tex] and it occurs at [tex]\(x = 3\)[/tex]. The absolute minimum value is [tex]\(f(1) = -9\)[/tex] and it occurs at [tex]\(x = 1\)[/tex].

To find the absolute maximum and minimum values of the function, we need to evaluate the function at the critical points and endpoints of the interval [tex]\([0, 3]\)[/tex]. First, we find the critical points by taking the derivative of the function and setting it equal to zero:

[tex]\[f'(x) = 4x^2 - 9 = 0\][/tex]

Solving this equation, we find two critical points: [tex]\(x = -\frac{3}{2}\)[/tex] and [tex]\(x = \frac{3}{2}\)[/tex]. However, these critical points are not within the interval [tex]\([0, 3]\)[/tex], so we don't need to consider them.

Next, we evaluate the function at the endpoints of the interval:

[tex]\[f(0) = 1\][/tex]

[tex]\[f(3) = -8\][/tex]

Comparing these values with the critical points, we see that the absolute maximum value is [tex]\(f(3) = -8\)[/tex] and it occurs at [tex]\(x = 3\)[/tex], while the absolute minimum value is [tex]\(f(1) = -9\)[/tex] and it occurs at [tex]\(x = 1\)[/tex]. Therefore, the function [tex]\(f(x) = \frac{4}{3}x^3 - 9x + 1\)[/tex] has an absolute maximum value of -8 at [tex]\(x = 3\)[/tex] and an absolute minimum value of -9 at [tex]\(x = 1\)[/tex] on the interval [tex]\([0, 3]\)[/tex].

To learn more about absolute maximum refer:

https://brainly.com/question/31490198

#SPJ11

Find the volume of the solid obtained by rotating the region in the first quadrant bounded by y = 25, y=1, and the y-axis around the x-axis. Volume = Find the volume of the solid obtained by rotatin

Answers

To find the volume of the solid obtained by rotating the region in the first quadrant bounded by y = 25, y = 1, and the y-axis around the x-axis, we can use the method of cylindrical shells.

The height of each cylindrical shell will be the difference between the two functions: y = 25 and y = 1. The radius of each cylindrical shell will be the x-coordinate of the corresponding point on the y-axis, which is 0

Let's set up the integral to find the volume:

Where a and b are the x-values that define the region (in this case, a = 0 and b = 25), f(x) is the upper function (y = 25), and g(x) is the lower function (y = 1)

[tex]V = ∫[0,25] 2πx * (25 - 1) dx[/tex]Simplifying:

[tex]V = 2π ∫[0,25] 24x dxV = 2π * 24 * ∫[0,25] x dx[/tex]Evaluating the integral:

[tex]V = 2π * 24 * [x^2/2] evaluated from 0 to 25V = 2π * 24 * [(25^2/2) - (0^2/2)]V = 2π * 24 * [(625/2) - 0]V = 2π * 24 * (625/2)V = 2π * 12 * 625V = 15000π[/tex]Therefore, the volume of the solid obtained by rotating the region in the first quadrant bounded by y = 25, y = 1, and the y-axis around the x-axis is 15000π cubic units.

To learn more about bounded  click on the link below:

brainly.com/question/30721244

#SPJ11

Find (a) the compound amount and (b) the compound interest rate for the given investment and annu $4000 for 5 years at 7% compounded annually (a) The compound amount in the account after 5 years is $ (b) The compound interest earned is $

Answers

The future value (A) is approximately 5610.2 for the given investment and annu $4000 for 5 years at 7% compounded annually

To find the compound amount and compound interest rate for the given investment, we can use the formula for compound interest:

(a) The compound amount in the account after 5 years can be calculated using the formula:

A = P(1 + r/n)^(nt)

Where A is the compound amount, P is the principal (initial investment), r is the interest rate, n is the number of times the interest is compounded per year, and t is the number of years.

Given that the principal (P) is $4000, the interest rate ® is 7%, and the interest is compounded annually (n = 1), and the investment is for 5 years (t = 5), we can plug these values into the formula:

A = 4000(1 + 0.07/1)^(1*5)

A = 4000(1 + 0.07/1)^(1*5)

= 4000(1 + 0.07)^(5)

= 4000(1.07)^(5)

≈ 4000(1.402551)

≈ 5610.20

Therefore, the future value (A) is approximately 5610.2

Calculating this expression will give us the compound amount after 5 years.

(b) The compound interest earned can be calculated by subtracting the principal from the compound amount:

Compound interest = Compound amount – Principa

This will give us the total interest earned over the 5-year period.

By evaluating the expressions in (a) and (b), we can determine the compound amount and the compound interest earned for the given investment.

Learn more about compound interest rate here:

https://brainly.com/question/30501640

#SPJ11








Find the derivative of the following function. Factor fully and simplify your answer so no negative or fractional exponents appear in your final answer. y= (2 −2)3(2+1)4

Answers

Using product rule, the derivative of the function is 2(2x - 2)²(3(2x + 1)⁴ + 4(2x - 2)(2x + 1)³)

What is the derivative of the function?

To determine the derivative of this function, we have to use product rule

Let's;

u = (2x - 2)³v = (2x + 1)⁴

Applying the product rule: dy/dx = Udv/dx + Vdu/dx

Taking the derivative of u with respect to x:

du/dx = 3(2x - 2)²(2) = 6(2x - 2)²

Taking the derivative of v with respect to x:

dv/dx = 4(2x + 1)³(2) = 8(2x + 1)³

Using product rule;

(2x - 2)³(2x + 1)⁴ = u * v

(2x - 2)³(2x + 1)⁴' = u'v + uv'

Substituting the values:

(2x - 2)³(2x + 1)⁴' = (6(2x - 2)²)(2x + 1)⁴ + (2x - 2)³(8(2x + 1)³)

Let's simplify and factor the expression;

(2x - 2)³(2x + 1)⁴' = 6(2x - 2)²(2x + 1)⁴ + 8(2x - 2)³(2x + 1)³

dy/dx= 2(2x - 2)²(3(2x + 1)⁴ + 4(2x - 2)(2x + 1)³)

Learn more on product rule here;

https://brainly.com/question/847241

#SPJ1

5. SKETCH the area D between the lines x = 0, y = 3-3x, and y = 3x - 3. Set up and integrate the iterated double integral for 11₁20 x dA. 6. (DO NOT INTEGRATE) Change the order of integration in the

Answers

The area D between the lines x = 0, y = 3-3x, and y = 3x - 3 can be represented as an iterated double integral of x over a certain region.

To set up the iterated double integral for ∫∫D x dA, we need to determine the limits of integration for each variable. Let's first consider the limits for y. The line y = 3-3x intersects the x-axis at x = 1, and the line y = 3x - 3 intersects the x-axis at x = 1 as well. So, the limits for y are from y = 0 to y = 3-3x for x between 0 and 1, and from y = 0 to y = 3x - 3 for x between 1 and 2.

Next, we determine the limits for x. We can see that the region D is bounded by the lines x = 0 and x = 2. Therefore, the limits for x are from 0 to 2.

Now, we have established the limits of integration for both x and y. We can set up the iterated double integral as follows:

∫∫D x dA = ∫[0 to 2] ∫[0 to 3-3x] x dy dx + ∫[1 to 2] ∫[0 to 3x-3] x dy dx.

Integrating with respect to y first, we have:

∫∫D x dA = ∫[0 to 2] (xy |[0 to 3-3x]) dx + ∫[1 to 2] (xy |[0 to 3x-3]) dx.

Evaluating the limits and simplifying the expression will give us the final result for the iterated double integral.

Learn more about integration here:

https://brainly.com/question/31744185

#SPJ11

Plese compute the given limit
|x2 + 4x - 5 lim (Hint: rewrite the function as a piecewise function, and compute the X – 1 limit from the left and the right.) x+1

Answers

Since the function contains an absolute value, we must calculate both the left-hand limit and the right-hand limit in order to determine the limit of the function |x2 + 4x - 5| / (x + 1).

To examine the left-hand and right-hand limits, let's rewrite the function as a piecewise function:

|x2 + 4x - 5| / (x + 1) equals -(x2 + 4x - 5) / (x + 1) for x -1. = -(x - 1)(x + 5) / (x + 1)

When x > -1, the equation is: |x2 + 4x - 5| / (x + 1) = (x - 1)(x + 5) / (x + 1)

Let's now compute the left- and right-hand limits.

Limit to the left (x -1-):

lim(x → -1-) (-(x - 1)(x + 5) / (x + 1))

Inputting x = -1 into the expression results in:

= -(-1 - 1)(-1 + 5) / (-1 + 1)

= (undefined) -(-2)(4)

Limit to the right (x -1+): lim(x -1+) ((x

learn more about calculate  here :

https://brainly.com/question/30102100

#SPJ11

I need help with integration of this and which
integration method you used. thanks.
integral ylny dy

Answers

The integral of yln(y) dy is given by (1/2) y² ln(y) - (1/4) y² + C, where C is the constant of integration.

The method used to integrate the function is integration by parts.

What is integration?

The summing of discrete data is indicated by the integration. To determine the functions that will characterize the area, displacement, and volume that result from a combination of small data that cannot be measured separately, integrals are calculated.

To integrate ∫yln(y) dy, we can use integration by parts. Integration by parts is a common method for integrating products of functions.

Let's proceed with the integration:

Step 1: Choose u and dv:

Let u = ln(y) and dv = y dy.

Step 2: Calculate du and v:

Differentiate u to find du:

du = (1/y) dy

Integrate dv to find v:

Integrating dv = y dy gives us v = (1/2) y².

Step 3: Apply the integration by parts formula:

The integration by parts formula is given by ∫u dv = uv - ∫v du.

Using this formula, we have:

∫yln(y) dy = uv - ∫v du

            = ln(y) * (1/2) y² - ∫(1/2) y² * (1/y) dy

            = (1/2) y² ln(y) - (1/2) ∫y dy

            = (1/2) y² ln(y) - (1/4) y² + C

So the integral of yln(y) dy is given by (1/2) y² ln(y) - (1/4) y² + C, where C is the constant of integration.

The method used to integrate the function is integration by parts.

Learn more about integration on:

https://brainly.com/question/12231722

#SPJ4

Let a denote a root of f(x) = x3 + x2 – 2x – 1 € Q[2]. x (a) Prove that f(x) is irreducible. Hint: Recall the rational root theorem. (b) Show that a? – 2 is also a root of f(x). (c) Use your p

Answers

We have shown that both \(a\) and \(a² - 2\) are roots of \(f(x)\).

(a) to prove that \(f(x) = x³ + x² - 2x - 1\) is irreducible, we can apply the rational root theorem. the rational root theorem states that if a polynomial with integer coefficients has a rational root \(\frac{p}{q}\), where \(p\) and \(q\) are coprime integers, then \(p\) must divide the constant term and \(q\) must divide the leading coefficient.

for the polynomial \(f(x) = x³ + x² - 2x - 1\), the constant term is -1 and the leading coefficient is 1. according to the rational root theorem, if \(f(x)\) has a rational root, it must be of the form[tex]\(\frac{p}{q}\),[/tex] where \(p\) divides -1 and \(q\) divides 1. the only possible rational roots are \(\pm 1\).

however, upon testing these potential roots, we find that neither \(\pm 1\) is a root of \(f(x)\). since \(f(x)\) does not have any rational roots, it is irreducible over the rational numbers.

(b) to show that \(a² - 2\) is also a root of \(f(x)\), we substitute \(x = a² - 2\) into the polynomial \(f(x)\):\(f(a² - 2) = (a² - 2)³ + (a² - 2)² - 2(a² - 2) - 1\)

expanding and simplifying the expression:

[tex]\(f(a² - 2) = a⁶ - 6a⁴ + 12a² - 8 + a⁴ - 4a² + 4 - 2a² + 4 - 1\)\(f(a² - 2) = a⁶ - 5a⁴ + 6a² - 1\)[/tex]

we can see that \(f(a² - 2)\) evaluates to zero, indicating that \(a² - 2\) is indeed a root of \(f(x)\).

(c) since \(a\) is a root of \(f(x)\), we know that \(f(a) = 0\). we can substitute \(x = a\) into the polynomial \(f(x)\) to get:

\(f(a) = a³ + a² - 2a - 1 = 0\)

Learn more about integers here:

https://brainly.com/question/490943

#SPJ11

there are 52 contacts in your phone. the only family members' numbers you have are your dad's, mom's, and brother's. what are the odds of selecting a number in your phone that is not your family?

Answers

The odds of selecting a number in your phone that is not your family are approximately 0.9423 or 94.23%.

To calculate the odds of selecting a number in your phone that is not your family, we need to determine the number of contacts that are not family members and divide it by the total number of contacts.

Given that you have 52 contacts in total, and you have the numbers of your dad, mom, and brother, we can assume that these three contacts are family members. Therefore, we subtract 3 from the total number of contacts to get the number of non-family contacts.

Non-family contacts = Total contacts - Family contacts

Non-family contacts = 52 - 3

Non-family contacts = 49

So, you have 49 contacts that are not family members.

To calculate the odds, we divide the number of non-family contacts by the total number of contacts.

Odds of selecting a non-family number = Non-family contacts / Total contacts

Odds of selecting a non-family number = 49 / 52

Simplifying the fraction:

Odds of selecting a non-family number ≈ 0.9423

Therefore, the odds of selecting a number in your phone that is not your family are approximately 0.9423 or 94.23%.

To learn more about selecting a number visit:

brainly.com/question/18811781

#SPJ11

The cube root of 64 is 4. How much larger is the cube root of 64.6? Estimate using the Linear Approximation. (Give your answer to five decimal places.)

Answers

This calculation is approximately 0.01145. Therefore, the cube root of 64.6 is approximately 0.01145 larger than the cube root of 64.

To estimate the difference in the cube root of 64.6 compared to the cube root of 64, we can use linear approximation.

Let f(x) be the function representing the cube root, and let x0 be the known value of 64.

The linear approximation of f(x) near x0 can be given by:

f(x) ≈ f(x0) + f'(x0)(x - x0)

To find the derivative of the cube root function, we have:

f(x) = x^(1/3)

Taking the derivative:

f'(x) = (1/3)x^(-2/3)

Now, we substitute x = 64 and x0 = 64 in the linear approximation formula:

f(64.6) ≈ f(64) + f'(64)(64.6 - 64)

f(64) = 4 (since the cube root of 64 is 4)

f'(64) = (1/3)(64)^(-2/3)

f(64.6) ≈ 4 + (1/3)(64)^(-2/3)(64.6 - 64)

Calculating this approximation:

f(64.6) ≈ 4 + (1/3)(64)^(-2/3)(0.6)

Now, we can compute the approximation to find how much larger the cube root of 64.6 is compared to the cube root of 64:

f(64.6) - f(64) ≈ 4 + (1/3)(64)^(-2/3)(0.6) - 4

Learn more about  the cube here:

https://brainly.com/question/32261041

#SPJ11

Consider the following double integral -dy dx By converting into an equivalent double mtegral in polar coordinates, we obtu 1- None of the This option 1- dr do This option This option This option

Answers

The given double integral -dy dx can be converted into an equivalent double integral in polar- coordinates. However, none of the provided options represent the correct conversion.

To convert the given double integral into polar coordinates, we need to express the variables x and y in terms of polar coordinates. In polar coordinates, x = r cos(θ) and y = r sin(θ), where r represents the radial distance and θ represents the angle.

Substituting these expressions into the given integral, we have:

-∫∫ dy dx

Converting to polar-coordinates, the integral becomes:

-∫∫ r sin(θ) dr dθ

In this new expression, the integration is performed with respect to r first and then θ.

However, none of the provided options correctly represent the equivalent double integral in polar coordinates. The correct option should be -∫∫ r sin(θ) dr dθ.

It's important to note that the specific limits of integration would need to be determined based on the region of integration for the original double integral.

Learn more about polar-coordinates here:

https://brainly.com/question/14436205

#SPJ11

ACD is a triangle.
BCDE is a straight line.
E-
142°
D
Find the values of x, y and z.
y
X =
y =
Z=
271°
A
N
53° X
C
B

Answers

x, y, and z have the values 127°, 127°, and 53°, respectively.

The values of x, y, and z must be determined using the angle properties of triangle and lines.

Given:

A triangle is AC.

The line BCDE is straight.

Angle E has a 142° angle.

Angle A has a 53° angle.

To locate x:

Since angle D is opposite angle A in triangle ACD and angle A is specified as 53°, we may infer that both angles are 53°.

x = 180° - 53° = 127° as a result.

Since BCDE is a straight line, the sum of angles CDE and BCD equals 180°, allowing us to determined y.

Angle CDE is directly across from 53°-long angle A.

Y = 180° - 53° = 127° as a result.

The total of the angles of a triangle is always 180°, so use that to determine z.

Z = 180° - 127° = 53° as a result.

Learn more about triangle, from :

brainly.com/question/2773823

#SPJ1

a We need to enclose a field with a rectangular fence, we have 400 ft of fencing material and a building is on one side of the field and so won't need any fencing. Determine the dimensions of the field that will enclose the largest area

Answers

To enclose the largest area with 400 ft of fencing material, the field should have dimensions of 100 ft by 100 ft, resulting in a square-shaped enclosure.

Let's assume the dimensions of the field are length (L) and width (W). Since there is a building on one side and no fencing is required, we only need to fence the remaining three sides of the field. Therefore, the total length of the three sides that require fencing is L + 2W.

Given that we have 400 ft of fencing material, we can write the equation L + 2W = 400.

To maximize the enclosed area, we need to find the dimensions that maximize L * W.

To solve for L and W, we can use the equation L = 400 - 2W, and substitute it into the area equation: A = (400 - 2W) * W.

To find the maximum area, we can differentiate the area equation with respect to W and set it equal to zero: dA/dW = 0. Solving for W, we find W = 100 ft.

Substituting the value of W back into the equation L = 400 - 2W, we find L = 100 ft.

Therefore, the dimensions of the field that enclose the largest area with 400 ft of fencing material are 100 ft by 100 ft, resulting in a square-shaped enclosure.

Learn more about dimensions of a field:

https://brainly.com/question/30757257

#SPJ11

Show whether the series converges absolutely, converges conditionally, or is divergent: Σ k² sink 1+k5 State which test(s) you use to justify your result. k= 1

Answers

The given series Σ k² sink / (1+[tex]k^5[/tex]) can be determined to be divergent based on the comparison test..

To further explain the reasoning behind determining the given series Σ k² sink / (1+[tex]k^5[/tex]) as divergent using the comparison test, let's examine the behavior of the terms and apply the test more explicitly.

In the given series, each term is of the form k² sink / (1+[tex]k^5[/tex]), where k is a positive integer. As k increases, the term sink / (1+[tex]k^5[/tex]) oscillates between -1 and 1. However, the term k² grows without bound as k increases. This implies that the magnitude of the term k² sink / (1+[tex]k^5[/tex]) also grows without bound.

To formally apply the comparison test, we compare the given series Σ k² sink / (1+[tex]k^5[/tex]) with the series Σ k². The series Σ k² is a well-known divergent series, known as the p-series with p = 2. This series diverges because the sum of the squares of positive integers is infinite.

Now, let's compare the terms of the two series. For any positive integer k, we have k² ≥ k². This means that each term of the given series is at least as large as the corresponding term of the divergent series Σ k².

According to the comparison test, if a series has terms that are at least as large as the terms of a known divergent series, then the given series is also divergent.

Therefore, based on the comparison test, we can conclude that the given series Σ k² sink / (1+[tex]k^5[/tex]) is divergent since its terms are at least as large as the corresponding terms of the divergent series Σ k².

In summary, by analyzing the growth of the terms and applying the comparison test with the divergent series Σ k², we can confidently determine that the given series Σ k² sink / (1+[tex]k^5[/tex]) is divergent.

Learn more about divergent series here:

https://brainly.com/question/15415793

#SPJ11

6. (-/1 Points] DETAILS LARAPCALC10 5.3.022. M Use the Log Rule to find the indefinite integral. (Use C for the constant of integration. Remember to use absolute values where ar dx

Answers

The indefinite integral of ∫ (x² - 6)/(6x) dx is (1/6) * (x³ - 6x²) + C, where C is the constant of integration.

We have the integral:

∫ (x² - 6)/(6x) dx.

We can simplify the integrand by factoring out (1/6x):

∫ (x - 6/x) dx.

To solve this integral, we can first simplify the integrand by factoring out (1/6x):

∫ (x² - 6)/(6x) dx = (1/6) * ∫ (x - 6/x) dx.

Now, we can split the integral into two separate integrals:

∫ x dx - (1/6) * ∫ (6/x) dx.

Integrating each term separately, we get:

(1/6) * (x²/2) - (1/6) * (6 * ln|x|) + C.

Simplifying further, we have:

(1/6) * (x³/2) - ln|x| + C.

Finally, we can rewrite the expression as:

(1/6) * (x³ - 6x²) + C.

learn more about Indefinite integral here:

https://brainly.com/question/29845193

#SPJ4

The complete question is:

Find the indefinite integral of (x² - 6)/(6x) dx using the Log Rule. Use C as the constant of integration and remember to include absolute values where necessary.

A graphing calculator is recommended. For the limit lim x → 2 (x3 − 3x + 3) = 5 illustrate the definition by finding the largest possible values of δ that correspond to ε = 0.2 and ε = 0.1. (Round your answers to four decimal places.)

Answers

To illustrate the limit definition for lim x → 2 (x^3 - 3x + 3) = 5, we need to find the largest possible values of δ for ε = 0.2 and ε = 0.1.

The limit definition states that for a given ε (epsilon), we need to find a corresponding δ (delta) such that if the distance between x and 2 (|x - 2|) is less than δ, then the distance between f(x) and 5 (|f(x) - 5|) is less than ε.

Let's first consider ε = 0.2. We want to find the largest possible δ such that |f(x) - 5| < 0.2 whenever |x - 2| < δ. To find this, we can graph the function f(x) = x^3 - 3x + 3 and observe the behavior near x = 2. By using a graphing calculator or plotting points, we can see that as x approaches 2, f(x) approaches 5. We can choose a small interval around x = 2, and by experimenting with different values of δ, we can determine the largest δ that satisfies the condition for ε = 0.2.

Similarly, we can repeat the process for ε = 0.1. By graphing f(x) and observing its behavior near x = 2, we can find the largest δ that corresponds to ε = 0.1.

It's important to note that finding the exact values of δ may require numerical methods or advanced techniques, but for the purpose of illustration, a graphing calculator can be used to estimate the values of δ that satisfy the given conditions.

Learn more about limit here:

https://brainly.com/question/12211820

#SPJ11

how do i solve this problem?

Answers

Answer:

  x = 11, y = 4

Step-by-step explanation:

You want to find x and y given an inscribed quadrilateral with angles identified as L=(10x), M=(10x-6), N=(16y+6), X=(4+18y).

Inscribed angles

The key here is that an inscribed angle has half the measure of the arc it subtends. Translated to an inscribed quadrilateral, this has the effect of making opposite angles be supplementary.

This relation gives you two equations in x and y:

(10x) +(16y +6) = 180(10x -6) +(4 +18y) = 180

Elimination

Subtracting the first equation from the second gives ...

  (10x +18y -2) -(10x +16y +6) = (180) -(180)

  2y -8 = 0

  y = 4

Substitution

Using this value of y in the first equation, we have ...

  10x +(16·4 +6) = 180

  10x +70 = 180

  x +7 = 18

  x = 11

The solution is (x, y) = (11, 4).

__

Additional comment

The angle measures are L = 110°, M = 104°, N = 70°, X = 76°.

The "supplementary angles" relation comes from the fact that the sum of arcs around a circle is 360°. Then the two angles that intercept the major and minor arcs of a circle will have a total measure that is half a circle, or 180°.

For example, angle L intercepts long arc MNX, and opposite angle N intercepts short arc MLX.

<95141404393>


1,2 please
[1] Set up an integral and use it to find the following: The volume of the solid of revolution obtained by revolving the region enclosed by the x-axis and the graph y=2x-r about the line x=-1 y=1+6x4

Answers

The volume of the solid of revolution obtained by revolving the region enclosed by the x-axis and the graph y = 2x - r about the line x = -1 y = 1 + 6[tex]x^4[/tex] is 2π [[tex]r^6[/tex]/192 - r³/24 + r²/8].

To find the volume of the solid of revolution, we'll set up an integral using the method of cylindrical shells.

Step 1: Determine the limits of integration.

The region enclosed by the x-axis and the graph y = 2x - r is bounded by two x-values, which we'll denote as [tex]x_1[/tex] and [tex]x_2[/tex]. To find these values, we set y = 0 (the x-axis) and solve for x:

0 = 2x - r

2x = r

x = r/2

So, the region is bounded by [tex]x_1[/tex] = -∞ and [tex]x_2[/tex] = r/2.

Step 2: Set up the integral for the volume using cylindrical shells.

The volume element of a cylindrical shell is given by the product of the height of the shell, the circumference of the shell, and the thickness of the shell. In this case, the height is the difference between the y-values of the two curves, the circumference is 2π times the radius (which is the x-coordinate), and the thickness is dx.

The volume element can be expressed as dV = 2πrh dx, where r represents the x-coordinate of the curve y = 2x - r.

Step 3: Determine the height (h) and radius (r) in terms of x.

The height (h) is the difference between the y-values of the two curves:

h = (1 + 6[tex]x^4[/tex]) - (2x - r)

h = 1 + 6[tex]x^4[/tex] - 2x + r

The radius (r) is simply the x-coordinate:

r = x

Step 4: Set up the integral using the limits of integration, height (h), and radius (r).

The volume of the solid of revolution is obtained by integrating the volume element over the interval [[tex]x_1[/tex], [tex]x_2[/tex]]:

V = ∫([tex]x_1[/tex] to [tex]x_2[/tex]) 2πrh dx

= ∫([tex]x_1[/tex] to [tex]x_2[/tex]) 2π(x)(1 + 6[tex]x^4[/tex] - 2x + r) dx

= ∫([tex]x_1[/tex] to [tex]x_2[/tex]) 2π(x)(1 + 6[tex]x^4[/tex] - 2x + x) dx

= ∫([tex]x_1[/tex] to [tex]x_2[/tex]) 2π(x)(6[tex]x^4[/tex] - x + 1) dx

Step 5: Evaluate the integral and simplify.

Integrate the expression with respect to x:

V = 2π ∫([tex]x_1[/tex] to [tex]x_2[/tex]) (6[tex]x^5[/tex] - x² + x) dx

= 2π [[tex]x^{6/3[/tex] - x³/3 + x²/2] |([tex]x_1[/tex] to [tex]x_2[/tex])

= 2π [([tex]x_2^{6/3[/tex] - [tex]x_2[/tex]³/3 + [tex]x_2[/tex]²/2) - ([tex]x_1^{6/3[/tex] - [tex]x_1[/tex]³/3 + [tex]x_1[/tex]²/2)]

Substituting the limits of integration:

V = 2π [([tex]x_2^{6/3[/tex] - [tex]x_2[/tex]³/3 + [tex]x_2[/tex]²/2) - ([tex]x_1^{6/3[/tex] - [tex]x_1[/tex]³/3 + [tex]x_1[/tex]²/2)]

= 2π [[tex](r/2)^{6/3[/tex] - (r/2)³/3 + (r/2)²/2 - [tex](-\infty)^{6/3[/tex] - (-∞)³/3 + (-∞)²/2]

Since [tex]x_1[/tex] = -∞, the terms involving [tex]x_1[/tex] become 0.

Simplifying further, we have:

V = 2π [[tex](r/2)^{6/3[/tex] - (r/2)³/3 + (r/2)²/2]

= 2π [[tex]r^{6/192[/tex] - r³/24 + r²/8]

Learn more about integral at

https://brainly.com/question/31433890

#SPJ4

A poster is to have an area of 510 cm2 with 2.5 cm margins at the bottom and sides and a 5 cm margin at the top. Find the exact dimensions (in cm) that will give the largest printed area. width cm hei

Answers

The poster dimensions that will give the largest printed area are a width of 14 cm and a height of 22 cm. This maximizes the usable area while accounting for the margins.

To find the dimensions that will give the largest printed area, we need to consider the margins and calculate the remaining usable area. Let's start with the given information: the poster should have an area of 510 cm², with 2.5 cm margins at the bottom and sides, and a 5 cm margin at the top.

First, we subtract the margins from the total height to get the usable height: 510 cm² - 2.5 cm (bottom margin) - 2.5 cm (side margin) - 5 cm (top margin) = 500 cm². Next, we divide the usable area by the width to find the height: 500 cm² ÷ width = height. Rearranging the equation, we get width = 500 cm² ÷ height.

To maximize the printed area, we need to find the dimensions that give the largest value for the product of width and height. By trial and error or using calculus, we find that the width of 14 cm and height of 22 cm yield the largest area, 504 cm².

In conclusion, the exact dimensions that will give the largest printed area for the poster are a width of 14 cm and a height of 22 cm.

To learn more about calculus click here: brainly.com/question/31801938

#SPJ11

Part C: Thinking Skills 1. Determine the coordinates of the local extreme points for f(x) = xe- 0.5%. IT

Answers

The required coordinates of the local extreme points for f(x) = xe^(-0.5x) are (2, 2e^(-1)).

The given function is f(x) = xe^(-0.5x).Part C: Thinking Skills1. Determine the coordinates of the local extreme points for f(x) = xe^(-0.5x).Solution:We are given the function f(x) = xe^(-0.5x).Now we will find its derivative, f'(x) using the product rule of differentiation.f(x) = u vwhere u = x and v = e^(-0.5x)Now, f'(x) = u' v + v' u= 1 (e^(-0.5x)) + (-0.5x)(e^(-0.5x))= e^(-0.5x) (1 - 0.5x)Now, f'(x) = 0 when 1 - 0.5x = 0=> 1 = 0.5x=> x = 2The critical point is at x = 2. Now we will check the nature of this critical point using the second derivative test.f''(x) = d/dx(e^(-0.5x)(1 - 0.5x))= e^(-0.5x)(0.25x - 0.5)Now, f''(2) = e^(-1) (0.25(2) - 0.5)= -0.18394Since f''(2) is negative, the given critical point is a local maximum.Therefore, the coordinates of the local extreme point are (2, 2e^(-1)).

Learn more about local extreme points here:

https://brainly.com/question/29142686

#SPJ11

Find the coefficient of zy in the expansion of (1 + xy + (1+ . +y?)"

Answers

To find the coefficient of zy in the expansion of (1 + xy + (1+ . +y?), we need to examine the terms in the expansion and determine the coefficient of zy. The coefficient of zy in the expansion of (1 + xy + (1+ . +y?) is 0.

To find the coefficient of zy in the given expression, we need to examine the terms that contain both z and y.

However, in the given expression, there is no term that contains both z and y. Therefore, the coefficient of zy is 0.

To find the coefficient of zy in the expansion of (1 + xy + (1+ . +y?), we need to examine the terms in the expansion and determine the coefficient of zy. However, it seems that there might be an error in the expression provided, as there are missing symbols and unclear terms. To provide a detailed explanation, please clarify the missing or ambiguous parts of the expression.

The given expression, (1 + xy + (1+ . +y?), seems to have missing symbols and unclear terms, making it difficult to determine the coefficient of zy. The presence of ellipsis (...) suggests that there might be missing terms or an incomplete pattern. Additionally, the presence of a question mark (?) in the term y? raises further ambiguity.

To provide a precise explanation and find the coefficient of zy, it is essential to clarify the missing or ambiguous parts of the expression. Please provide the complete and accurate expression or provide additional information to help resolve any uncertainties.


To learn more about expansion click here: brainly.com/question/14447197

#SPJ11

The number of people (in hundreds) who have heard a rumor in a large company days after the rumor is started is approximated by
P(t) = (10ln(0.19t + 1)) / 0.19t+ 1
t greater than or equal to 0
When will the number of people hearing the rumor for the first time start to decline? Write your answer in a complete sentence.

Answers

The number of people hearing the rumor for the first time will start to decline when the derivative of the function P(t) changes from positive to negative.

To determine when the number of people hearing the rumor for the first time starts to decline, we need to find the critical points of the function P(t). The critical points occur where the derivative of P(t) changes sign.

First, we find the derivative of P(t) with respect to t:

P'(t) = [10(0.19t + 1)ln(0.19t + 1) - 10ln(0.19t + 1)(0.19)] / (0.19t + 1)^2.

To determine the critical points, we set P'(t) equal to zero and solve for t:

[10(0.19t + 1)ln(0.19t + 1) - 10ln(0.19t + 1)(0.19)] / (0.19t + 1)^2 = 0.

Simplifying, we have:

[0.19t + 1]ln(0.19t + 1) - ln(0.19t + 1)(0.19) = 0.

Factoring out ln(0.19t + 1), we get:

ln(0.19t + 1)[0.19t + 1 - 0.19] = 0.

The critical points occur when ln(0.19t + 1) = 0, which means 0.19t + 1 = 1. Taking t = 0 satisfies this equation.

To determine when the number of people hearing the rumor for the first time starts to decline, we need to examine the sign changes of P'(t) around the critical point t = 0. By evaluating the derivative at points near t = 0, we find that P'(t) is positive for t < 0 and negative for t > 0.

Learn more about derivative  here:

https://brainly.com/question/29144258

#SPJ11

The point TL TT in the spherical coordinate system represents the point TC in the cylindrical coordinate system. Select one: True False

Answers

The statement is false. The point TL TT in the spherical coordinate system does not represent the same point as the point TC in the cylindrical coordinate system.

The spherical coordinate system and the cylindrical coordinate system are two different coordinate systems used to represent points in three-dimensional space.

In the spherical coordinate system, a point is represented by its radial distance from the origin (r), the angle made with the positive z-axis (θ), and the angle made with the positive x-axis in the xy-plane (ϕ).

In the cylindrical coordinate system, a point is represented by its distance from the z-axis (ρ), the angle made with the positive x-axis in the xy-plane (θ), and its height along the z-axis (z). The coordinates are usually denoted as (ρ, θ, z).

Comparing the coordinates, we can see that the radial distance in the spherical coordinate system (r) is not equivalent to the distance from the z-axis in the cylindrical coordinate system (ρ).

Learn more about cylindrical coordinate here;
https://brainly.com/question/31473499

#SPJ11

Other Questions
please show stepsUse Runga-Kutta 4 to determine y(1.3) for f(x,y) with y(1) = 1 y Select the correct text in the passage.Phillip and Dean had a good relationship in the past. Which sentence in the passage best supports this statement?from May Dayby F. Scott Fitzgerald At nine o'clock on the morning of the first of May, 1919, a young man spoke to the room clerk at the Biltmore Hotel, asking if Mr. Philip Dean were registered there, and if so, could he be connected with Mr. Dean's rooms. The inquirer was dressed in a well-cut, shabby suit. He was small, slender, and darkly handsome; his eyes were framed above with unusually long eyelashes and below with the blue semicircle of ill health, this latter effect heightened by an unnatural glow which colored his face like a low, incessant fever. Mr. Dean was staying there. The young man was directed to a telephone at the side. After a second his connection was made; a sleepy voice hello'd from somewhere above. "Mr. Dean?"this very eagerly"it's Gordon, Phil. It's Gordon Sterrett. I'm down-stairs. I heard you were in New York and I had a hunch you'd be here." The sleepy voice became gradually enthusiastic. Well, how was Gordy, old boy! Well, he certainly was surprised and tickled! Would Gordy come right up, for Pete's sake! A few minutes later Philip Dean, dressed in blue silk pajamas, opened his door and the two young men greeted each other with a half-embarrassed exuberance. They were both about twenty-four, Yale graduates of the year before the war; but there the resemblance stopped abruptly. Dean was blond, ruddy, and rugged under his thin pajamas. Everything about him radiated fitness and bodily comfort. He smiled frequently, showing large and prominent teeth. "I was going to look you up," he cried enthusiastically. "I'm taking a couple of weeks off. If you'll sit down a sec I'll be right with you. Going to take a shower." As he vanished into the bathroom his visitor's dark eyes roved nervously around the room, resting for a moment on a great English travelling bag in the corner and on a family of thick silk shirts littered on the chairs amid impressive neckties and soft woollen socks. Gordon rose and, picking up one of the shirts, gave it a minute examination. It was of very heavy silk, yellow, with a pale blue stripeand there were nearly a dozen of them. He stared involuntarily at his own shirt-cuffsthey were ragged and linty at the edges and soiled to a faint gray. Dropping the silk shirt, he held his coat-sleeves down and worked the frayed shirt-cuffs up till they were out of sight. Then he went to the mirror and looked at himself with listless, unhappy interest. His tie, of former glory, was faded and thumb-creasedit served no longer to hide the jagged buttonholes of his collar. He thought, quite without amusement, that only three years before he had received a scattering vote in the senior elections at college for being the best-dressed man in his class. Inventory management and Demand planning at Dell The computer company Dell has long been seen as one of the most agile businesses in the industry. The success of Dell is in large part due to its highly responsive supply chain, which is capable of building and delivering customized products in a matter of days with minimal inventory. Dells ability to operate a build-to-order strategy is based partly on the modular design of many of their products but more particularly on a very high level of synchronization with their suppliers. There is a high level of visibility across the Dell supply chain with suppliers receiving information on Dells order book every two hours. Ahead of this information, suppliers are provided with capacity forecasts from Dell to enable them to produce at a rate that is planned to match actual demand. Each of Dells factories is served from a vendor hub, operated by third-party logistics service providers, the purpose of which is to keep a buffer of inventory from which Dell can draw as required. Suppliers are required to keep a defined level of inventory at these hubs and Dell only takes ownership of the inventory when it reaches their factories. Dell adopts a very proactive approach to demand management by using the price mechanism to regulate demand for specific products or features. If a product is in short supply the price will rise and/or the price of an alternative substitute product will fall. This facility to actively manage demand enables a very close matching of supply and demand.1. What are the features of Dells Inventory management plan? List down few important points you observed. 2. What could be the positive effects of this inventory management for Dells business? Consider the function f(x)=4x^34x on the interval [2,2]. (a) The slope of the secant line joining (2,f(2)) and (2,f(2)) is m= (b) Since the conditions of the Mean Value Theorem hold true, there exists at least one c on (2,2) such that f (c)= (c) Find c. c= _______ is the degree to which the data represents all required values, such as a data set that should contain an hour of data, for a sensor that reports every second, having 100% of the data values suppose that you run a regression and find for observation 11 that the observed value is 12.7 while the fitted value is 13.65. what is the residual for observation 11? 10. If 2x s f(x) < **- x2 +2 for all x, evaluate lim f(x) (8pts ) X-1 why do companies gather market intelligence and conduct marketing research A student used f(x)=5.00 (1.012)x to show the balance in a savings account will increase over time.what does the 5.00 represent? FILL THE BLANK. the condensed electron configuration of silicon, element 14, is __________. Section 4.6 homework, part 2 Save progress Done VO Score: 8/22 2/4 answered Question 3 < > B0/4 pts 3 397 Details One earthquake has MMS magnitude 3.3. If a second earthquake has 320 times as much ene Solve for x. Solve for x. Solve for x. Solve for x. Solve for x. Solve for x. DETAILS PREVIOUS ANSWERS Find the point at which the line intersects the given plane. x = 3-t, y = 4 + t, z = 2t; x = y + 3z = 3 7 14 4 (x, y, z) = 3' 3'3 X Need Help? Read It Watch It 8. [0/1 Points] If a thorough profile is developed, its importance and weight in the courtroom overshadows any other physical evidence. true false. let y denote the amount in gallons of gas stocked by a service station at the beginning of a week. suppose that y has a uniform distribution over the interval [10, 000, 20, 000]. suppose the amount x of gas sold during a week has a uniform distribution over the interval [10, 000, y ]. what is the variance of x 2x1/5+7=15URGENTSHOW WORKX should be x=1024 A ball is thrown vertically upward from ground level with initial velocity of 96 feet per second. Assume the acceleration of the ball is a(t) = -32 ft^2 per second. (Neglect air Resistance.)(a) How long will it take the ball to raise to its maximum height? What is the maximum heights?(b) After how many seconds is the velocity of the ball one-half the initial velocity?(c) What is the height of the ball when its velocity is one-half the initial velocity? Evaluate. (Be sure to check by differentiating!) Jx13 *7 dx Determine a change of variables from x to u. Choose the correct answer below. O A. u=x14 OB. u=x13 ex O c. u=x13 OD. u=ex Write the integral southern home cookin' just paid its annual dividend of $0.65 a share. dividends are expected to grow at 6% forever. the stock has a market price of $13 and a beta of 1.09. the return on the u.s. treasury bill is 2.5 percent and the market risk premium is 6.8 percent. what is the cost of equity? group of answer choices a. 10.61 percentb. 9.30 percent c. 11.30 percentd. 12.71 percent which is a vital promotional technique for entertainment marketing