(a) compute the repeat unit molecular weight of polypropylene. (b) compute the number-average molecular weight for polypropylene for which the degree of polymerization is 15,000.

Answers

Answer 1

a) The repeat unit mοlecular weight οf pοlyprοpylene is 42.08 g/mοl.

b) The number-average mοlecular weight οf pοlyprοpylene with a degree οf pοlymerizatiοn οf 15,000 is apprοximately 315,620 g/mοl.

How to compute the molecular weight of polypropylene?

a) The repeat unit οf pοlyprοpylene cοnsists οf the mοnοmer prοpylene, which has a mοlecular weight οf apprοximately 42.08 g/mοl.

Therefοre, the repeat unit mοlecular weight οf pοlyprοpylene is 42.08 g/mοl.

(b) The number-average mοlecular weight (Mn) οf a pοlymer can be calculated using the fοrmula:

Mn = M0 × (1 + 2 + 3 + ... + n) / (n + 1)

where M0 is the mοlecular weight οf the repeat unit and n is the degree οf pοlymerizatiοn.

In this case, M0 (repeat unit mοlecular weight) is 42.08 g/mοl and n (degree οf pοlymerizatiοn) is 15,000.

Mn = 42.08 g/mοl × (1 + 2 + 3 + ... + 15,000) / (15,000 + 1)

Tο calculate the sum οf numbers frοm 1 tο 15,000, we can use the fοrmula fοr the sum οf an arithmetic series:

Sum = (n / 2) × (first term + last term)

Using this fοrmula, we have:

Sum = (15,000 / 2) × (1 + 15,000) = 112,507,500

Nοw we can substitute the values intο the equatiοn fοr Mn:

Mn = 42.08 g/mοl × 112,507,500 / (15,000 + 1)

Mn ≈ 315,620 g/mοl

Therefοre, the number-average mοlecular weight οf pοlyprοpylene with a degree οf pοlymerizatiοn οf 15,000 is apprοximately 315,620 g/mοl.

Learn more about molecular weight

https://brainly.com/question/20380323

#SPJ4


Related Questions

unput the sum of the coeffients of phosphoric acid and ammonium hydroxide

Answers

The sum of the coefficients of phosphoric acid and ammonium hydroxide is 6.

The chemical equation for the reaction between phosphoric acid (H₃PO₄) and ammonium hydroxide (NH₄OH) is as follows:

H₃PO₄ + NH₄OH → (NH₄)₃PO₄ + H₂O

To find the sum of the coefficients, we add up the coefficients of all the compounds involved in the balanced equation:

1 + 1 + 3 + 1 = 6

Know more about phosphoric acid here:

https://brainly.com/question/30489231

#SPJ11

a sodium-22 nucleus undergoes electron capture. what is the atomic number of the product? (there is only one product of this reaction.)

Answers

When a sodium-22 nucleus undergoes electron capture, it captures an electron from one of its inner shells. This results in the formation of a new nucleus with one less proton in its nucleus.

Since the atomic number of an element is defined by the number of protons in its nucleus, the atomic number of the product will be one less than the atomic number of sodium-22, which is 11. Therefore, the product of this reaction will have an atomic number of 10. This new nucleus will also have the same mass number as sodium-22, which is 22, as the number of neutrons in the nucleus remains the same.

To know more about nucleus visit:

https://brainly.com/question/23366064

#SPJ11

write the oxidation state for the underlined element in the box following each compound.
a) NaH
b) KNO3
c) Na2PtCI6
d) Ca3(PO3)2
e) NA(NCS)

Answers

The oxidation state of Na in NaH is +1,  N in [tex]KNO_3[/tex] is +5, Pt in [tex]Na_2PtCl_6[/tex] is approximately +2/3, P in  [tex]Ca_3(PO_3)_2[/tex]  is -3 and N in Na(NCS) is -2.

A) NaH: The oxidation state of hydrogen (H) is typically -1 in compounds, so the oxidation state of Na in NaH is +1.

b) [tex]KNO_3[/tex] : The oxidation state of potassium (K) is +1 in compounds, the oxidation state of nitrogen (N) in[tex]NO_3[/tex] is +5, and the oxidation state of oxygen (O) is -2 in compounds. Therefore, the oxidation state of N in [tex]KNO_3[/tex]is +5.

c) [tex]Na_2PtCl_6[/tex] : The oxidation state of sodium (Na) is +1 in compounds, the oxidation state of chlorine (Cl) is typically -1 in compounds, and the sum of oxidation states in a neutral compound is zero. Since the overall compound is neutral, the oxidation state of platinum (Pt) can be calculated as follows:

2(+1) + 6(x) + 6(-1) = 0

2 + 6x – 6 = 0

6x – 4 = 0

6x = 4

X ≈ +2/3

So, the oxidation state of Pt in[tex]Na_2PtCl_6[/tex] s approximately +2/3.

d) [tex]Ca_3(PO_3)_2[/tex] : The oxidation state of calcium (Ca) is +2 in compounds, and the oxidation state of oxygen (O) is typically -2 in compounds. The phosphate ion (PO3) has an overall charge of -3. Therefore, the oxidation state of phosphorus (P) in  [tex]Ca_3(PO_3)_2[/tex]  can be calculated as follows:

3(+2) + 2(x) = 0

6 + 2x = 0

2x = -6

X = -3

So, the oxidation state of P in [tex]Ca_3(PO_3)_2[/tex] is -3.

e) Na(NCS): The oxidation state of sodium (Na) is +1 in compounds, and the oxidation state of sulfur (S) in thiocyanate (NCS) is typically -2. Therefore, the oxidation state of N in Na(NCS) is -2.

Learn more about oxidation state here:

https://brainly.com/question/31688257

#SPJ11

In an experiment, 5.585 g of iron metal reacts with 3.207 g of yellow sulfur. Using the conservation of mass law, predict the mass of product. Fe(s)+S(s)- 4 > Fe(s) A) 2.198 g B) 2.378 g C) 4.396 g D) 8.792 g E) 17.584 g

Answers

The correct answer is D) 8.792. Based on the conservation of mass, the predicted mass of the product is 8.792 g (Option D).

To predict the mass of the product formed in the reaction between iron (Fe) and sulfur (S), we need to determine the limiting reactant. We can use the concept of the conservation of mass to calculate the mass of the product. Molar mass of Fe = 55.845 g/mol

Molar mass of S = 32.06 g/mol

Moles of Fe = 5.585 g / 55.845 g/mol = 0.0997 mol

Moles of S = 3.207 g / 32.06 g/mol = 0.1000 mol

Determine the limiting reactant:

Since the molar ratio between Fe and S is 1:1 (from the balanced equation), it is clear that S is the limiting reactant since it has fewer moles.

Calculate the mass of the product (FeS):

Molar mass of FeS = 87.91 g/mol (FeS)

Mass of FeS = Moles of S x Molar mass of FeS

= 0.1000 mol x 87.91 g/mol

= 8.791 g

To know more about reactants

https://brainly.com/question/26283409

#SPJ11

what is the molecular formula for a compound that is 82.6% carbon and 17.4% hydrogen, by mass, and has a molar mass of 58.0 g/mol?

Answers

The molecular formula for the compound with 82.6% carbon and 17.4% hydrogen, by mass, and a molar mass of 58.0 g/mol is C₃H₆.

What is the molecular formula?

To determine the molecular formula, we first need to find the empirical formula. The empirical formula gives the simplest whole number ratio of atoms in a compound. To find the empirical formula, we assume 100 g of the compound, which corresponds to 82.6 g of carbon and 17.4 g of hydrogen.

Next, we convert the masses of carbon and hydrogen to moles using their respective molar masses. The molar mass of carbon is 12.01 g/mol, and the molar mass of hydrogen is 1.01 g/mol.

Moles of carbon = 82.6 g / 12.01 g/mol ≈ 6.88 mol

Moles of hydrogen = 17.4 g / 1.01 g/mol ≈ 17.2 mol

To find the simplest whole number ratio, we divide the number of moles by the smallest number of moles, which is approximately 6.88 mol.

Moles of carbon in empirical formula = 6.88 mol / 6.88 mol ≈ 1 mol

Moles of hydrogen in empirical formula = 17.2 mol / 6.88 mol ≈ 2.5 mol

Since we need whole numbers, we multiply both the carbon and hydrogen ratios by 2, giving us the empirical formula C₂H₅.

Finally, we compare the molar mass of the empirical formula to the given molar mass of 58.0 g/mol. The molar mass of C₂H₅ is approximately 29 g/mol, which is half of the given molar mass. To obtain the molecular formula, we multiply the empirical formula by 2, resulting in C₄H₁₀.

However, the given percentages of carbon and hydrogen indicate that there is an unsaturation present in the compound, suggesting a double bond between two carbon atoms. Therefore, the molecular formula is C₃H₆.

Learn more about molecular formula

https://brainly.com/question/29435366#

#SPJ4

a 100.0 g sample of copper at 100.0 Celsius is added to 50.0g water at 26.5 degrees Celsius. what is the final temperature of the mixture? the specific heat of cu is 0.385 J/g•c

Answers

The final temperature of the mixture is approximately -9.88°C of a 100.0 g sample of copper at 100.0 Celsius is added to 50.0g water at 26.5 degrees Celsius.

To determine the final temperature of the mixture, we can use the principle of conservation of energy, assuming no heat is lost to the surroundings.

The heat gained by the water can be calculated using the formula:

Q = m * c * ΔT, where Q is the heat gained or lost, m is the mass, c is the specific heat capacity, and ΔT is the change in temperature.

For the water:

Q_water = (50.0 g) * (4.18 J/g·°C) * (T_f - 26.5°C)

For the copper:

Q_copper = (100.0 g) * (0.385 J/g·°C) * (T_f - 100.0°C)

Since the total heat gained by the water is equal to the total heat lost by the copper (Q_water = -Q_copper), we can set up the equation:

(50.0 g) * (4.18 J/g·°C) * (T_f - 26.5°C) = -(100.0 g) * (0.385 J/g·°C) * (T_f - 100.0°C)

Now, we can solve for T_f, the final temperature of the mixture. By simplifying and rearranging the equation:

(50.0 g * 4.18 J/g·°C - 100.0 g * 0.385 J/g·°C) * T_f = -50.0 g * 4.18 J/g·°C * 26.5°C + 100.0 g * 0.385 J/g·°C * 100.0°C

T_f = (-50.0 g * 4.18 J/g·°C * 26.5°C + 100.0 g * 0.385 J/g·°C * 100.0°C) / (50.0 g * 4.18 J/g·°C - 100.0 g * 0.385 J/g·°C)

Calculating the values inside the parentheses:

T_f = (-5535 J + 3850 J) / (209 J - 38.5 J)

T_f = (-1685 J) / (170.5 J)

T_f ≈ -9.88°C

To learn more about temperature click here https://brainly.com/question/32257956

#SPJ11

name all the intermediates (carbocations) and describe each mechanistic step. for example, proton transfer, alkyl migration, rearrangement, etc. (1 point):

Answers

The intermediates (carbocations) in a reaction and their mechanistic steps include proton transfer, alkyl migration, and rearrangement.

In a chemical reaction, intermediates known as carbocations play a crucial role. Carbocations are positively charged carbon atoms with three bonds and an empty p orbital. The reaction mechanism involves several steps, including proton transfer, alkyl migration, and rearrangement.

Proton transfer occurs when a proton [tex](H^+)[/tex] is transferred from one molecule to another, resulting in the formation of a carbocation. This step often involves the transfer of a proton from a strong acid or a proton donor to a reactant.

Alkyl migration takes place when an alkyl group (a group consisting of carbon and hydrogen atoms) shifts from one carbon atom to another. This process leads to the formation of a more stable carbocation intermediate.

Rearrangement involves the movement of atoms or groups within a molecule to form a more stable carbocation. This step often occurs when the initial carbocation is less stable due to factors such as electronic or steric effects.

Overall, the mechanistic steps in a reaction involving carbocations include proton transfer, alkyl migration, and rearrangement. These steps play a vital role in determining the course of the reaction and the formation of the final products.

Learn more about carbocations here:

https://brainly.com/question/31538109

#SPJ11

provide the chemical structure for 9-chlorobicyclo 3.3.1 nonane

Answers

The chemical structure for 9-chlorobicyclo 3.3.1 nonane can be represented as follows: [tex]CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH(Cl) - CH_2[/tex]

This structure indicates that the compound consists of a chain of seven carbon atoms, each of which is bonded to two other carbon atoms and one hydrogen atom. Additionally, one of the carbon atoms is bonded to a chlorine atom, which is represented by (Cl) in the structure. Nonane refers to a nine-carbon straight-chain hydrocarbon, which is the backbone of the compound. The term "bicyclo 3.3.1" indicates that there are three rings in the structure, with two of them fused together. The numbers in the name describe the size of each ring and the position of the fusion points.

To learn more about Nonane click here https://brainly.com/question/30056453

#SPJ11

which salt would have it’s solubility more affected by changes in ph by the addition of nitric acid, silver chloride or silver cyanide?

Answers

The solubility of silver cyanide may be affected more by changes in pH due to the addition of nitric acid than the solubility of silver chloride.

In general, the solubility of a salt is affected by changes in pH. The extent of the effect, however, depends on the specific salt. In the case of silver chloride and silver cyanide, both salts are relatively insoluble in water. However, of the two, silver cyanide is more soluble than silver chloride. Therefore, it is likely that silver cyanide would be more affected by changes in pH due to the addition of nitric acid. The reason for this is that silver cyanide is a weak acid and has a tendency to dissociate in water to form hydrogen cyanide and silver ions. The hydrogen cyanide that is produced can react with nitric acid to form cyanic acid, which can then react with silver ions to form silver cyanide.

To know more about solubility visit:

https://brainly.com/question/31493083

#SPJ11

Does the property apply to an ideal gas, non-ideal gas, or both? a)Ideal Gas b)Non ideal Gas c)Both Ideal and Non-ideal Gas = Molecules do have a small volume = No attractions = Molecules have no volume = Collisions can cause chemical reactions = Perfectly elastic collisions = Molecules in constant motion

Answers

The property mentioned applies to both ideal gases and non-ideal gases.

The property described in the question applies to both ideal gases and non-ideal gases. Ideal gases are hypothetical gases that follow the ideal gas law, which assumes that the gas molecules have no volume and do not interact with each other. In this case, the statement "Molecules have no volume" and "Perfectly elastic collisions" align with the characteristics of an ideal gas.

On the other hand, non-ideal gases deviate from the assumptions of the ideal gas law. They possess some volume and experience intermolecular attractions or repulsions. Despite these deviations, the property mentioned in the question still holds true for non-ideal gases as well.

Even though non-ideal gases have a small volume and may exhibit attractions between molecules, the collisions among the gas molecules can still cause chemical reactions, and the collisions themselves remain perfectly elastic.

In summary, the property stated in the question is applicable to both ideal gases and non-ideal gases.

To learn more about ideal gases here:

https://brainly.com/question/11951894

#SPJ11

An electrochemical cell is based on the following two half-reactions:
oxidation: Sn(s)→Sn2+(aq,Sn(s)→Sn2+(aq, 1.70 MM )+2e−)+2e−
reduction: ClO2(g,ClO2(g, 0.130 atmatm )+e−→ClO−2(aq,)+e−→ClO2−(aq, 1.70 MM )
Compute the cell potential at 25 ∘C∘C.

Answers

The oxidation half-reaction involves the conversion of solid tin (Sn) to [tex]Sn^2^+[/tex] ions, while the reduction half-reaction converts chlorine dioxide gas [tex](ClO_2)[/tex] to [tex]ClO^2^-[/tex] ions.

To calculate the cell potential, we need to identify the reduction potential (E°) for each half-reaction. The reduction potential for the Sn2+ half-reaction can be found in a standard reduction potential table, which is +0.15 V.

The oxidation half-reaction needs to be reversed since we have it in the opposite direction, so the E° value becomes -0.15 V. The reduction potential for the [tex]ClO_2[/tex] half-reaction is not given, so we can assume it to be 0 V.

The cell potential (Ecell) is calculated by subtracting the oxidation potential from the reduction potential: Ecell = E(reduction) - E(oxidation). Therefore, Ecell = (0 V) - (-0.15 V) = +0.15 V. This positive value indicates that the reaction is spontaneous and the electrochemical cell is capable of producing electrical energy.

Learn more about electrochemical cells  here:

https://brainly.com/question/23631454

#SPJ11

a uniform edge load of w1 = 480 lb/in. and w2 = 400 lb/in. is applied to the polystyrene specimen. ep = 597(103)psi and νp = 0.25 . (figure 1)

Answers

A polystyrene specimen is subjected to a uniform edge load with magnitudes of 480 lb/in and 400 lb/in. The polystyrene's elastic modulus is 597,000 psi, and its Poisson's ratio is 0.25.

In Figure 1, a polystyrene specimen is under a uniform edge load, where w1 = 480 lb/in and w2 = 400 lb/in. The elastic modulus of the polystyrene, represented as ep, is 597,000 psi. The elastic modulus refers to a material's ability to deform under stress and is an indicator of its stiffness. A higher elastic modulus implies a stiffer material.

Additionally, the Poisson's ratio of the polystyrene, denoted as νp, is 0.25. Poisson's ratio measures the lateral contraction or expansion of a material when subjected to axial deformation. A Poisson's ratio of 0.25 suggests that the polystyrene specimen experiences slight lateral expansion when compressed axially.

Learn more about elastic modulus  here:

https://brainly.com/question/30402322

#SPJ11

Assume that a substation transformer has a constant hazard rate of 0.005 per day. What is the probability that it will fail during the next 5 years? What is the probability that it will not fail?

Answers

The exponential distribution can compute the risk that a substation transformer will fail in five years. Failure rate per unit of time is the hazard rate. Thus, 91.34% of substation transformers will not fail in five years.

Hazard rate = 0.005 per day.

5 years = 5 * 365 days = 1825 days.

The formula calculates the chance of failure in five years:

P(failure) = 1 - exp(-*t)

P(failure) = 1 - exp(-0.005*1825).

P(failure)=0.0866 or 8.66%.

Thus, 8.66% of substation transformers fail after five years.

Subtracting the likelihood of failure from 1 gives the probability of success  P(failure) - P(non-failure)

P(non-failure) = 1 - 0.0866

91.34% or 0.9134

To know more about transformer

https://brainly.com/question/4389563

#SPJ11

Sample A is 100. mL of a clear liquid. The density of the liquid is measured, and turns out to be 0.77 g/mL. The liquid is then cooled in the refrigerator. At 10.0 °C two separate clear layers form in the liquid. When the temperature is raised back to room temperature, the layers disappear. • Sample B is a solid yellow cube with a total mass of 50.0 g. The cube is divided into two smaller 25.0 g subsamples, and the minimum volume of water needed to dissolve each subsample is measured. The first subsample just barely dissolved in 101. mL of water, the second in 92. mL. When the experiment is repeated with a new 50.0 g. sample, the minimum volume of water required to dissolve the two subsamples is 89. mL and 93. mL. O pure substance Is sample A made from a pure substance or a mixture? x 6 ? o mixture If the description of the substance and the outcome of the experiment isn't enough to decide, choose "can't decide." O (can't decide) O pure substance Is sample B made from a pure substance or a mixture? O mixture If the description of the substance and the outcome of the experiment isn't enough to decide, choose "can't decide." O (can't decide)

Answers

Sample A is a mixture. The formation of two separate clear layers when cooled and then disappearing when returned to room temperature indicates that there are two different substances present in the sample. The density of the liquid at 0.77 g/mL also suggests that it may be a mixture as pure substances typically have specific densities.

Sample B is a pure substance. The fact that the same amount of water is needed to dissolve both subsamples in both trials suggests that they are both the same substance. Additionally, the fact that they are both yellow cubes with the same mass further supports the idea that they are a pure substance. The slight variation in the amount of water needed to dissolve the subsamples could be due to variations in the density of the solid cubes or slight differences in the solubility of the subsamples.

Overall, the experiments conducted on both samples suggest that Sample A is a mixture and Sample B is a pure substance.

To know more about temperature visit:

https://brainly.com/question/7510619

#SPJ11

calculate the vapor pressure (in torr) at 298 k in a solution prepared by dissolving 23.8 g of the non-volatile non-electrolye glucose in 103 g of methanol. the vapor pressure of methanol at 298 k is 122.7 torr.

Answers

The vapor pressure of the solution at 298 K is calculated to be approximately X torr (rounded to the appropriate number of significant figures).

To calculate the vapor pressure of the solution, we can use Raoult's law, which states that the vapor pressure of a component in an ideal solution is directly proportional to its mole fraction in the solution. The equation for Raoult's law is:

P_solution = X_A * P_A

where P_solution is the vapor pressure of the solution, X_A is the mole fraction of component A, and P_A is the vapor pressure of component A in its pure state.

First, we need to calculate the mole fraction of glucose (component A) in the solution. We can use the following formula:

X_A = n_A / n_total

where n_A is the moles of glucose and n_total is the total moles of both glucose and methanol.

To calculate the moles of glucose, we can use its molar mass:

Molar mass of glucose (C6H12O6) = 180.16 g/mol

n_A = mass_A / molar mass_A

n_A = 23.8 g / 180.16 g/mol

Next, we calculate the moles of methanol using its molar mass:

Molar mass of methanol (CH3OH) = 32.04 g/mol

n_methanol = mass_methanol / molar mass_methanol

n_methanol = 103 g / 32.04 g/mol

Now we can calculate the mole fraction of glucose:

X_A = n_A / (n_A + n_methanol)

Finally, we can calculate the vapor pressure of the solution using Raoult's law:

P_solution = X_A * P_A

P_solution = X_A * 122.7 torr

Using the calculations described above, we can determine the vapor pressure of the solution at 298 K. By applying Raoult's law and calculating the mole fraction of glucose in the solution, we can obtain the desired result.

To know more about pressure ,visit:

https://brainly.com/question/28012687

#SPJ11

Entex PSE is a decongestant drug. An analysis shows that it is composed of 60.58% C, 7.13% H, and 32.29% What is its empirical formula?

Answers

The empirical formula of Entex PSE, given its composition of 60.58% carbon (C), 7.13% hydrogen (H), and 32.29% oxygen (O), can be determined by converting the percentages into moles and finding the simplest whole-number ratio. The empirical formula is C_{9}H_{13}NO.

To determine the empirical formula, we need to convert the percentages of each element into moles. Assuming we have 100 grams of the compound, we can calculate the moles of each element.

For carbon (C):

Percentage of C = 60.58%

Molar mass of C = 12.01 g/mol

Moles of C =\frac{ (60.58 g / 100 g) }{ (12.01 g/mol) }≈ 0.504 mol

For hydrogen (H):

Percentage of H = 7.13%

Molar mass of H = 1.01 g/mol

Moles of H =\frac{ (7.13 g / 100 g) }{ (1.01 g/mol) }≈ 0.07 mol

For oxygen (O):

Percentage of O = 32.29%

Molar mass of O = 16.00 g/mol

Moles of O = \frac{(32.29 g / 100 g) }{ (16.00 g/mol) }≈ 0.202 mol

Next, we need to find the simplest whole-number ratio of these moles. By dividing each mole value by the smallest mole value (0.07 mol), we get approximately 7.2 moles of C, 1 mole of H, and 2.9 moles of O.

Rounding these values to the nearest whole number, we find the empirical formula of Entex PSE to be C_{9}H_{13}NO.

learn more about empirical formula Refer: https://brainly.com/question/32125056

#SPJ11

0 out of 1 points calculate the poh of a solution that results from mixing 22.2 ml of 0.14 m benzoic acid with 45.5 ml of 0.11 m sodium benzoate. the ka value for c6h5cooh is 6.5 x 10-5.

Answers

The pOH of the solution resulting from the mixture is approximately 1.34.  we need to determine the concentration of hydroxide ions (OH-) in the solution.

The hydroxide ion concentration can be obtained by calculating the concentration of the benzoate ion (C6H5COO-) using the equilibrium expression for the dissociation of benzoic acid.

The dissociation reaction of benzoic acid (C6H5COOH) is as follows:

C6H5COOH ⇌ C6H5COO- + H+

- Volume of benzoic acid solution (V1) = 22.2 ml

- Concentration of benzoic acid (C1) = 0.14 M

- Volume of sodium benzoate solution (V2) = 45.5 ml

- Concentration of sodium benzoate (C2) = 0.11 M

- Ka value for benzoic acid (C6H5COOH) = 6.5 x 10^-5

Step 1: Calculate the moles of benzoic acid (C6H5COOH):

Moles of C6H5COOH = concentration (C1) × volume (V1)

                 = 0.14 M × 0.0222 L

                 = 0.003108 mol

Step 2: Calculate the moles of sodium benzoate (C6H5COO-):

Moles of C6H5COO- = concentration (C2) × volume (V2)

                = 0.11 M × 0.0455 L

                = 0.004995 mol

Step 3: Calculate the moles of OH- ions produced:

Since benzoic acid dissociates in water to produce one benzoate ion (C6H5COO-) and one hydrogen ion (H+), the moles of OH- ions produced are equal to the moles of benzoic acid used:

Moles of OH- = 0.003108 mol

Step 4: Calculate the concentration of OH- ions:

Concentration of OH- = Moles of OH- / Total volume of solution

                   = 0.003108 mol / (0.0222 L + 0.0455 L)

                   = 0.046 M

Step 5: Calculate the pOH:

pOH = -log10[OH-]

    = -log10(0.046)

    = 1.34

Learn more about concentration  visit:

https://brainly.com/question/30273212

#SPJ11

choose the element in the set below that you would expect to have the highest second ionization energy, ie2. k, be, mg, ca, al

Answers

The element in the given set (K, Be, Mg, Ca, Al) that you would expect to have the highest second ionization energy (IE2) is Be (Beryllium). This is because ionization energy generally increases across a period from left to right and decreases down a group in the periodic table. Beryllium is furthest to the right among the elements in the set, leading to a higher second ionization energy due to its increased effective nuclear charge and smaller atomic size.

The element in the set that I would expect to have the highest second ionization energy (ie2) is beryllium (Be). Beryllium has a electron configuration of 1s2 2s2 and its first ionization energy is relatively low due to its small atomic size and strong nuclear charge. This means that it is easy to remove one of its electrons, but the second ionization energy required to remove a second electron from a Be+ ion is significantly higher. This is because the remaining electrons are now held more tightly by the nucleus due to the reduced shielding effect. Therefore, Be has the highest second ionization energy among the elements listed.
To know more about ionization energy visit:

https://brainly.com/question/28385102

#SPJ11

What is the most common geometry found in four-coordinate complexes?
A) square planar
B) octahedral
C) tetrahedral
D) icosahedral
E) trigonal bipyramidal

Answers

The most common geometry found in four-coordinate complexes is tetrahedral. In a tetrahedral geometry, the central atom is surrounded by four other atoms or groups of atoms, which are located at the corners of a tetrahedron. Therefore, the correct answer to this question is C) tetrahedral.

This geometry is commonly found in compounds with sp3 hybridization, where the central atom has four electron pairs in its valence shell. The other options listed in the question, such as octahedral and trigonal bipyramidal, are more commonly found in compounds with six or more coordination sites. Square planar and icosahedral geometries are less common, but can still be observed in certain complex compounds. Therefore, the correct answer to this question is C) tetrahedral.

To know more about Octahedral visit:

https://brainly.com/question/17204989

#SPJ11

A teacher gets to school early to prepare sodium hydroxide for her students' titration
final. If she wants to prepare 1000 mL of 0.02 M NaOH, how many grams of sodium
hydroxide are needed?

Answers

The teacher required 0.8 grams of NaOH to make 1000 mL of a 0.02 M sodium hydroxide solution.

To find the mass of NaOH required  to make a given volume and concentration of NaOH solution, use the equation:

moles = concentration × volume (L)

Change the volume from milliliters to liters:

1000 mL = 1 L

To find the moles of NaOH needed:

moles = 0.02 M × 1 L

= 0.02 moles

To change moles to grams, use molar mass of NaOH. The molar mass of NaOH is equal to 40.00 g/mol

(Na: 22.99 g/mol, O₂: 16.00 g/mol, H: 1.01 g/mol).

Now, find the mass of NaOH:

mass = moles × molar mass

= 0.02 moles × 40.00 g/mol

= 0.8 grams

Thus, the teacher required 0.8 grams of sodium hydroxide to make 1000 mL of a 0.02 M NaOH solution.

Learn more about sodium hydroxide, here:

https://brainly.com/question/10073865

#SPJ1

For the reaction shown below: 2 HI (g) <--> H2 (g) + I2 (g) the Kp= 255 at 25 C If a reaction vessel initially contains 2.50 atm of Hl.what will be the pressure of all species once eguilbrium is established?

Answers

The pressure of H2 and I2 at equilibrium is approximately 39.94 atm, and the pressure of HI at equilibrium will be the initial pressure of HI minus the pressure of H2 (since the stoichiometry is 2:1).

To determine the pressure of all species once equilibrium is established, we need to use the given equilibrium constant (Kp) and the initial pressure of HI.

The balanced equation for the reaction is: 2 HI (g) ⇌ H2 (g) + I2 (g)

Given:

Kp = 255

Initial pressure of HI = 2.50 atm

Let's assume that at equilibrium, the pressure of H2 is x atm and the pressure of I2 is also x atm.

Using the equilibrium expression and the given Kp value, we can set up the equation:

Kp = (P(H2) * P(I2)) / (P(HI)^2)

Substituting the known values:

255 = (x * x) / (2.50^2)

Simplifying the equation:

255 = x^2 / 6.25

Cross-multiplying:

x^2 = 255 * 6.25

x^2 = 1593.75

Taking the square root of both sides, we get:

x ≈ 39.94

Pressure of HI at equilibrium = Initial pressure of HI - Pressure of H2 = 2.50 atm - 39.94 atm ≈ -37.44 atm

Note that the negative pressure indicates that the reactant HI is mostly consumed, and the products H2 and I2 dominate the equilibrium mixture.

Know more about pressure here:

https://brainly.com/question/30673967

#SPJ11

Use the appropriate standard reduction potentials below to determine the equilibrium constant at 301 K for the following reaction under acidic conditions 4H" (aq) + MnO, (s) + 2Fe2+ (aq) Mn2 (aq) + 2Fe+ (aq) + 2H,00) Standard reduction potentials Mno,(s) + 4H (4) 20 Mn?(aq) + 2H,00) 1.23 V Fe()+"-Fe2(a)-0,770 V 2nd attempt See Hint

Answers

To determine the equilibrium constant (K) for the given reaction under acidic conditions, we need to use the Nernst equation, which relates the standard reduction potentials (E°) to the equilibrium constant.

The Nernst equation is as follows:E = E° - (RT / nF) * ln(Q)

Given the standard reduction potentials:

MnO2(s) + 4H+(aq) + 2e- → Mn2+(aq) + 2H2O(l)    E° = 1.23 V

Fe3+(aq) + e- → Fe2+(aq)    E° = -0.770 V

The balanced equation becomes:

4H+(aq) + MnO2(s) + 2Fe2+(aq) → Mn2+(aq) + 2Fe3+(aq) + 2H2O(l)

Using the Nernst equation, we can calculate the cell potential (E) at 301 K:

E = E° - (RT / nF) * ln(Q)

For the forward reaction, Q = [Mn2+(aq)] * [Fe3+(aq)]^2 / [H+(aq)]^4

For the reverse reaction, Q = 1/K (K is the equilibrium constant)

Since the reaction is at equilibrium, E = 0. The equation becomes:

0 = E° - (RT / nF) * ln(K)

Solving for ln(K):

ln(K) = E° / ((RT / nF))

Substituting the given values:

E° = 1.23 V

R = 8.314 J/(mol·K)

T = 301 K

n = 4 (from the balanced equation)

F = 96,485 C/mol

ln(K) = 1.23 / ((8.314 * 301) / (4 * 96485))

Calculating ln(K):

ln(K) ≈ 2.090

To find K, we take the exponential of both sides:

K = e^(ln(K))

K ≈ e^(2.090)

K ≈ 8.08

Therefore, the equilibrium constant (K) at 301 K for the given reaction under acidic conditions is approximately 8.08.

Learn more about standard reduction potentials here ;

https://brainly.com/question/31362624

#SPJ11

practice: in the spaces below, write the electron configurations for the next four elements: nitrogen, oxygen, fluorine, and neon. when you are finished, use the gizmo to check your work. correct any improper configurations.questionanswerpossibleearneda.nitrogen1b.oxygen1c.fluorine1d.neon1

Answers

The electron configurations for the next four elements, nitrogen (N), oxygen (O), fluorine (F), and neon (Ne), are as follows:

a. Nitrogen (N): 1s² 2s² 2p³

Nitrogen has an atomic number of 7. The electron configuration starts with the 1s orbital, which can hold up to 2 electrons. Then, it fills the 2s orbital, which can also hold up to 2 electrons. Finally, it fills three of the five available orbitals in the 2p sublevel, which can hold a total of 6 electrons.

b. Oxygen (O): 1s² 2s² 2p⁴

Oxygen has an atomic number of 8. Following the same pattern as before, the electron configuration fills the 1s and 2s orbitals with 2 electrons each. It then fills all four available orbitals in the 2p sublevel with 4 electrons.

c. Fluorine (F): 1s² 2s² 2p⁵

Fluorine has an atomic number of 9. It follows the same pattern as nitrogen and oxygen, filling the 1s and 2s orbitals with 2 electrons each. It then fills five of the available orbitals in the 2p sublevel with 5 electrons.

d. Neon (Ne): 1s² 2s² 2p⁶

Neon has an atomic number of 10. The electron configuration fills the 1s and 2s orbitals with 2 electrons each. It then fills all six available orbitals in the 2p sublevel with 6 electrons.

Please note that these electron configurations represent the ground state configurations for the elements mentioned.

To know more about neon visit:

https://brainly.com/question/31187112

#SPJ11

Transesterification is the process of converting one ester to another. the transesterification reaction of ethyl butanoate with propanol will result in the formation of:
A) ethyl propanoate
B) methyl ethanoate
C) butyl propanoate
D) propyl butanoate

Answers

Transesterification is a chemical reaction that involves the exchange of an ester group in one molecule with an alcohol group in another molecule.

In the case of the given question, the transesterification reaction of ethyl butanoate with propanol will result in the formation of ethyl propanoate. This is because the ester group of ethyl butanoate is replaced with the alcohol group of propanol, resulting in the formation of a new ester, ethyl propanoate. This reaction is often used in the production of biodiesel, where vegetable oils are transesterified with methanol or ethanol to form fatty acid methyl or ethyl esters. Propanol, on the other hand, is not commonly used in transesterification reactions due to its high cost and low reactivity compared to methanol and ethanol.

To learn more about Transesterification click here https://brainly.com/question/30901947

#SPJ11

what was the maximum temperature displayed on the thermometer after the addition of the naoh solution to the hcl solution in the flask?

Answers

To determine the maximum temperature, carefully record the initial temperature and monitor the thermometer during the reaction until the temperature peaks and begins to decrease.

The maximum temperature displayed on the thermometer after the addition of the NaOH solution to the HCl solution in the flask cannot be determined without specific data from the experiment. The temperature change depends on factors like the concentration and volume of the solutions, as well as the initial temperature. However, when an acid (HCl) reacts with a base (NaOH), an exothermic neutralization reaction occurs, producing heat and causing the temperature to increase. To determine the maximum temperature, carefully record the initial temperature and monitor the thermometer during the reaction until the temperature peaks and begins to decrease. The temperature change depends on factors like the concentration and volume of the solutions, as well as the initial temperature.

To know more about thermometer visit:

https://brainly.com/question/28726426

#SPJ11

A) Write a balanced equation depicting the formation of one mole of NO2(g) from its elements in their standard states. Express your answer as a chemical equation. Identify all of the phases in your answer.
B) Write a balanced equation depicting the formation of one mole of SO3(g) from its elements in their standard states. Express your answer as a chemical equation. Identify all of the phases in your answer.
C) Write a balanced equation depicting the formation of one mole of NaBr(s) from its elements in their standard states. Express your answer as a chemical equation. Identify all of the phases in your answer.
D) Write a balanced equation depicting the formation of one mole of Pb(NO3)2(s) from its elements in their standard states.

Answers

The balanced equations with one mole are: A) [tex]N_2(g) + O_2(g) - > 2NO_2(g)[/tex], B) [tex]S(s) + O_2(g) - > SO_3(g)[/tex], C) [tex]Na(s) + 1/2Br_2(l) - > NaBr(s)[/tex] and D)[tex]Pb(s) + 2HNO_3(aq) - > Pb(NO_3)_2(s) + H_2(g)[/tex]

A) The balanced equation depicting the formation of one mole of NO2(g) from its elements in their standard states is:

[tex]N_2(g) + O_2(g) - > 2NO_2(g)[/tex]

B) The balanced equation depicting the formation of one mole of SO3(g) from its elements in their standard states is:

[tex]S(s) + O_2(g) - > SO_3(g)[/tex]

C) The balanced equation depicting the formation of one mole of NaBr(s) from its elements in their standard states is:

[tex]Na(s) + 1/2Br_2(l) - > NaBr(s)[/tex]

D) The balanced equation depicting the formation of one mole of Pb(NO3)2(s) from its elements in their standard states is:

[tex]Pb(s) + 2HNO_3(aq) - > Pb(NO_3)_2(s) + H_2(g)[/tex]

The phases of the elements and compounds are indicated in parentheses, where (g) represents gas, (s) represents solid, (l) represents liquid, and (aq) represents aqueous solution.

To learn more about mole click here https://brainly.com/question/30892840

#SPJ11

Which one of the following compound names is paired with an incorrect formula?
lithium acetate - LiC2H3O2
potassium carbonate - KHCO3
gold (I) sulfate - Au2SO4
ammonium carbonate - (NH4)2CO3
Which of the following compounds has a name that is an exception to the rule for naming molecular compounds?
NH3
PF3
P4O10
S2Cl2

Answers

The formula for gold (I) sulfate is Au2SO4, which is incorrect. The naming of molecular compounds follows specific rules, where the prefix indicates the number of atoms for each element. However, there are exceptions to this rule, and NH3 is one such example.



The incorrect pairing of compound names and formulas can be identified through the use of chemical formulas and knowledge of the charges of ions. The formula of lithium acetate is LiC2H3O2, which is correct as lithium ion has a charge of +1, and acetate ion has a charge of -1. Similarly, potassium carbonate has a formula of K2CO3, which is also correct.  The correct formula should be Au2(SO4)3. Lastly, ammonium carbonate has a formula of (NH4)2CO3, which is also correct.

The naming of molecular compounds follows specific rules, where the prefix indicates the number of atoms for each element. However, there are exceptions to this rule, and NH3 is one such example.
Although it is a molecular compound, it is commonly known as ammonia, and its name does not use any prefixes to indicate the number of atoms. On the other hand, PF3, P4O10, and S2Cl2 are named using prefixes indicating the number of atoms of each element. Therefore, the correct answer to the question is NH3.

To know more about molecular compounds visit:

https://brainly.com/question/23088724

#SPJ11

Will a precipitate form when two solutions are mixed together resulting in a solution that is 0.0150 M lead (II) nitrate and 0.0075 M sodium chloride?

Answers

Yes, a precipitate will form when the solutions of 0.0150 M lead (II) nitrate and 0.0075 M sodium chloride are mixed together.

How to determine if a precipitate will form?

To determine if a precipitate will form, we need to compare the solubility of the possible products formed from the reaction of lead (II) nitrate (Pb(NO₃)₂) and sodium chloride (NaCl).

Lead (II) chloride (PbCl₂) is insoluble in water and forms a precipitate. Sodium nitrate (NaNO₃) is soluble and remains in solution.

When the solutions are mixed, the lead (II) ions (Pb²⁺) from lead (II) nitrate will react with the chloride ions (Cl⁻) from sodium chloride to form lead (II) chloride.

The concentrations of lead (II) ions and chloride ions in the mixed solution are:

[lead (II) ions] = 0.0150 M

[chloride ions] = 0.0075 M

Since the concentration of chloride ions exceeds the solubility product constant (Ksp) of lead (II) chloride, a precipitate of lead (II) chloride will form.

Therefore, when the solutions are mixed, a precipitate of lead (II) chloride will form.

To know more about precipitate, refer here:
https://brainly.com/question/24846690

#SPJ4

in part a, you determined that 98.0 g of h2o is equal to 5.44 mol of h2o . you then multiplied the number of moles by the heat of fusion to find the energy needed for melting. part c is similar to part a, except that you will use the heat of vaporization instead of the heat of fusion to find the energy needed for boiling.

Answers

The energy required to vaporize 98.0 g of H2O is 221 kJ. This process requires a lot more energy than melting, as the heat of vaporization is much greater than the heat of fusion.

In part a, we found the energy required to melt ice by using the heat of fusion. Now, in part c, we need to find the energy required to vaporize water. To do this, we need to use the heat of vaporization, which is the amount of energy required to convert a substance from a liquid to a gas. The heat of vaporization of water is 40.7 kJ/mol.
We already know that 98.0 g of H2O is equal to 5.44 mol of H2O (from part a). Now, we can multiply the number of moles by the heat of vaporization to find the energy required for boiling:
Energy = 5.44 mol x 40.7 kJ/mol = 221 kJ
So, the energy required to vaporize 98.0 g of H2O is 221 kJ. This process requires a lot more energy than melting, as the heat of vaporization is much greater than the heat of fusion. It takes a significant amount of energy to break the bonds between liquid molecules and allow them to escape into the gas phase.

To know more about heat of fusion visit: https://brainly.com/question/32292861

#SPJ11

the normal boiling point of ammonia is −33.34°c, and its enthalpy of vaporization is 23.35 kj/mol. what pressure would have to be applied for ammonia to boil at 25.00°c?

Answers

The pressure that would need to be applied for ammonia to boil at 25.00°C is approximately 1.9 *10^{-6} atm.

The Clausius-Clapeyron equation is given as ln(P2/P1) = (ΔHvap/R) × (1/T1 - 1/T2), where P1 and P2 are the initial and final pressures, ΔHvap is the enthalpy of vaporization, R is the ideal gas constant, T1 is the initial temperature, and T2 is the final temperature.

Given:

T1 = -33.34°C (converted to Kelvin: 239.81 K)

T2 = 25.00°C (converted to Kelvin: 298.15 K)

ΔHvap = 23.35 kJ/mol (converted to J/mol: 23,350 J/mol)

To solve for the pressure (P2), we rearrange the equation as follows:

ln(\frac{P2}{P1}) = (\frac{ΔHvap}{R}) * (\frac{1}{T1} -\frac{ 1}{T2})

Substituting the values, we have:

ln(\frac{P2}{1 atm }) = (\frac{23,350 J/mol }{ 8.314 J/(mol·K)}) * (\frac{1}{239.81 K }- \frac{1}{298.15 K})

After solving the equation, we find that ln(\frac{P2}{1 atm }) ≈ -12.526.

Taking the antilog of both sides, we have:

\frac{P2}{1 atm }≈ e^(-12.526) = 1.9 *10^{-6} atm

Therefore, the pressure that would need to be applied for ammonia to boil at 25.00°C is approximately 1.9 *10^{-6} atm.

learn more about ammonia Refer: https://brainly.com/question/29519032

#SPJ11

Other Questions
Thabisa; Amos; Samuel; municipality;railways; Cape Town; Lilian; BrakwaterThami Mbikwana's father, (a) ... and his mother (b) ... live in(c)... Thami's father works for the (d) ...4.1.2. Explain why Mr M says to Isabel that she won 'the popular vote'(line 6).4.2.3. Of what 'exploit' (line 10) does Mr M accuse Thami?4.1.4. Refer to line 12 ('all is fair in love, war and debating').(a) Identify the figure of speech used in this line.(b) Explain how this figure of speech emphasises what Mr M issaying. Fran Company is currently operating profitably. The company has a fixed cost structure. Based on this information which of the following statements is true?If volume increases by 20%, profitability will increase by less than 20%.If volume increases by 20%, profitability will increase by more than 20%.If volume increases by 20%, profitability will increase by 20%.If volume increases by 20%, profitability will decrease by 20%. The area of a newspaper page (opened up) is about 640. 98 square inches. Determine the length and width of the page if its length is about 1. 23 times its width In the figure, if I and K are parallel lines, what is the value of x+y in degrees? Before you drive to school, the pressure in your car tire is 3 atm at 20C. At the end of the tripto school, the pressure gauge reads 3.2 atm. What is the new temperature in Kelvin of air inside thetire? which government agency publishes the dietary guidelines for americans newspaper publisher whose yellow journalism influenced public opinion Fx= f(x)=. Vix Find the Taylor series of 5.1 around the point x=1 where we reach the n=4 term. $(x)=x2+x 5.2. Find the macrorin series of by finding the term n=4 w Two circles with unequal radii are extremely tangent. If thelength of a common external line tangent to both circles is 8. Whatis the product of the radii of the circles? Which of the following is most important to most people in choosing a mate?A. Good looksB. Personality characteristicsC. Political ideologyD. Health (4-5)(4+5)211where a and b are integers.Writein the formFind the values of a and b. You and a friend of your choice are driving to Nashville in two differentcars. You are traveling 65 miles per hour and your friend is traveling 51miles per hour. Your friend has a 35 mile head start. Nashville is about 200miles from Memphis (just so you'll know). When will you catch up withyour friend? which level of protein structure is responsible for the folding of a single polypeptide chain into beta sheets and/or alpha helices? suppose a = {0,2,4,6,8}, b = {1,3,5,7} and c = {2,8,4}. find: (a) ab (b) ab (c) a b cardiovascular disease can cause damage to other internal organs. T/F ACTIVITY 1 Read the poem, Hard to find, and answer the questions below. 1 Hard to find by Sinesipo Jojo 234 5 67 7 8 9 10 11 12 13 14 1.1 cannot express her feelings. Words just escape her mind when she needs to use them. 15 1.2 Hopeful (in the last 2 lines): the speaker expresses a wish that words will one day become aware of what his/her her heart wants to say. 1.3 1.4 1.5 Words are everywhere daily we read them, and they fly out like nobody's business when we are provoked... but there's always something hard to understand... they are hard to find when they are needed by the heart; when the heart feels, words hide like they are not part of life. While words are busy playing some twisted game my heart looks sadly through the glass windows as the raindrops slowly slide down, gently on a cloudy lifetime, hoping that one day, words will realize what my heart wants to say. Explain the hyperbole used in line 1. What does the word 'daily' suggest about the speaker? Refer to lines 2-3 ('they fly out... like nobody's business'). Explain what the speaker means in these lines. What is the role of the ellipsis at the end of lines 4 and 5? Refer to line 10 ('While words are... some twisted game') Identify a figure of speech in this line. (a) 18 on january 1, payson incorporated had a retained earnings balance of $44,000. during the year, payson reported net income of $32,400 and paid cash dividends of $19,400. calculate the retained earnings balance at its december 31 year-end. rebecca notices that as winter approaches and the days get shorter, colder, and less sunny, she feels increasingly sad and down. rebecca's friend suggests that she try a treatment in which she sits by a high-intensity light source for a short period of time each day. rebecca's friend is suggesting that she try:a. phototherapyb. cognitive-behavioral therapyc. behavioral therapyd. a mood stabilizer In a state lottery four digits are drawn at random one at a time with replacement from 0 to 9. Suppose that you win if any permutation of your selected integers is drawn. Give the probability of winning if you select: a. 6,7,8,9 b. 6,7,8,8, c. 7,7,8,8 d. 7,8,8,8 In this assignment, you'll create a C++ Date class that stores a calendar date.. You'll test it using the supplied test main() function (attached below).In your class, use three private integer data member variables to represent the date (month, day, and year).Supply the following public member functions in your class.A default constructor (taking no arguments) that initializes the Date object to Jan 1, 2000.A constructor taking three arguments (month, day, year) that initializes the Date object to the parameter values.It sets the Date's year to 1900 if the year parameter is less than 1900It sets the Date's month to 1 if the month parameter is outside the range of 1 to 12.It sets the Date's day to 1 if the day parameter is outside the range of days for the specific month. Assume February always has 28 days for this test.A getDay member function that returns the Date's day value.A getMonth member function that returns the Date's month value.A getYear member function that returns the Date's year value.A getMonthName member function that returns the name of the month for the Date's month (e.g. if the Date represents 2/14/2000, it returns "February"). You can return a const char* or a std::string object from this function.A print member function that prints the date in the numeric form MM/DD/YYYY to cout (e.g. 02/14/2000). Month and day must be two digits with leading zeros as needed.A printLong member function that prints the date with the month's name in the form dd month yyyy (e.g. 14 February 2000) to cout. This member function should call the getMonthName() member function to get the name. No leading zeroes required for the day.The class data members should be set to correct values by the constructor methods so the get and print member functions simply return or print the data member values. The constructor methods must validate their parameter values (eg. verify the month parameter is within the range of 1 to 12) and only set the Date data members to represent a valid date, thus ensuring the Date object's data members (i.e. its state) always represent a valid date.The print member function should output the date in the format MM/DD/YYYY with leading zeros as needed, using the C++ IOStreams cout object. To get formatting to work with C++ IOStreams (cout), look at the setw() and setfill() manipulator descriptions, or the width() and fill() functions in the chapter on the C++ I/O System.#include #include #include using namespace std; // or use individual directives, e.g. using std::string;class Date{// methods and data necessary};Use separate files for the Date class definition (in Date.h), implementation of the member functions (Date.cpp), and the attached test main() function (DateDemo.cpp). The shortest member functions (like getDay() ) may be implemented in the class definition (so they will be inlined). Other member functions should be implemented in the Date.cpp file. Both Date.cpp and DateDemo.cpp will need to #include the Date.h file (since they both need the Date class definition in order to compile) and other include files that are needed (e.g. iostream, string, etc).-----main function used for data and to test class----// DateDemo.cpp// Note - you may need to change the definition of the main function to// be consistent with what your C++ compiler expects.int main(){Date d1; // default ctorDate d2(7, 4, 1976); // July 4'th 1976Date d3(0, 15, 1880);// Adjusted by ctor to January 15'th 1900d1.print(); // prints 01/01/2000d1.printLong(); // prints 1 January 2000cout