A 0.0255-kg bullet is accelerated from rest to a speed of 530 m/s in a 2.75-kg rifle. The pain of the rifle’s kick is much worse if you hold the gun loosely a few centimeters from your shoulder rather than holding it tightly against your shoulder. For this problem, use a coordinate system in which the bullet is moving in the positive direction.
(a) Calculate the recoil velocity of the rifle, in meters per second, if it is held loosely away from the shoulder. ANS: -4.91 m/s
(b) How much kinetic energy, in joules, does the rifle gain? ANS: 33.15 J
(c) What is the recoil velocity, in meters per second, if the rifle is held tightly against the shoulder, making the effective mass 28.0 kg? ANS: -0.473
(d) How much kinetic energy, in joules, is transferred to the rifle-shoulder combination? The pain is related to the amount of kinetic energy, which is significantly less in this latter situation.

Answers

Answer 1

(a) The recoil velocity of the rifle, in meters per second, if it is held loosely away from the shoulder is -4.91 m/s.

(b) The kinetic energy gained by the rifle is 33.15 J.

(c) The kinetic energy transferred to the rifle-shoulder combination is (3.46 - 0) J = 3.46 J.

(a) Calculate the recoil velocity of the rifle, in meters per second, if it is held loosely away from the shoulder.

Given:

Mass of bullet, m1 = 0.0255 kg

Mass of rifle, m2 = 2.75 kg

Speed of bullet, v1 = 530 m/s

Initial velocity of bullet, u1 = 0 m/s

Initial velocity of rifle, u2 = 0 m/s

Final velocity of rifle, v2 = ?

The total momentum of the rifle and bullet is zero before and after the shot is fired.

Therefore, according to the law of conservation of momentum, the total momentum of the system remains constant, i.e.,

(m1 + m2) u2

= m1 v1 + m2 v2⇒

v2 = [(m1 + m2) u2 - m1 v1]/m2

The negative sign indicates that the direction of the recoil velocity is opposite to the direction of the bullet's velocity.

Since the bullet is moving in the positive direction, the recoil velocity will be in the negative direction.

v2 = [(0.0255 + 2.75) × 0 - 0.0255 × 530]/2.75v2

    = -4.91 m/s

Therefore, the recoil velocity of the rifle, in meters per second, if it is held loosely away from the shoulder is -4.91 m/s.

(b) How much kinetic energy, in joules, does the rifle gain?

Given:

Mass of bullet, m1 = 0.0255 kg

Mass of rifle, m2 = 2.75 kg

Speed of bullet, v1 = 530 m/s

Initial velocity of bullet, u1 = 0 m/s

Initial velocity of rifle, u2 = 0 m/s

Final velocity of rifle, v2 = -4.91 m/s

Kinetic energy is given by the formula:

K = 1/2 mv²

Kinetic energy of the rifle before the shot is fired, K1 = 1/2 × 2.75 × 0² = 0 J

Kinetic energy of the rifle after the shot is fired, K2 = 1/2 × 2.75 × (-4.91)² = 33.15 J

Therefore, the kinetic energy gained by the rifle is 33.15 J.

(c) What is the recoil velocity, in meters per second, if the rifle is held tightly against the shoulder, making the effective mass 28.0 kg?

Given:

Mass of bullet, m1 = 0.0255 kg

Mass of rifle, m2 = 28.0 kg

Speed of bullet, v1 = 530 m/s

Initial velocity of bullet, u1 = 0 m/s

Initial velocity of rifle, u2 = 0 m/s

Final velocity of rifle, v2 = ?

Effective mass, M = m1 + m2

                              = 0.0255 + 28.0

                              = 28.0255 kg

Using the law of conservation of momentum,(m1 + m2) u2 = m1 v1 + m2 v2⇒

v2 = [(m1 + m2) u2 - m1 v1]/m2

v2 = [(0.0255 + 28.0) × 0 - 0.0255 × 530]/28.0v2 = -0.473 m/s

Therefore, the recoil velocity, in meters per second, if the rifle is held tightly against the shoulder is -0.473 m/s.

(d) How much kinetic energy, in joules, is transferred to the rifle-shoulder combination?

Given:

Mass of bullet, m1 = 0.0255 kg

Mass of rifle, m2 = 28.0 kg

Speed of bullet, v1 = 530 m/s

Initial velocity of bullet, u1 = 0 m/s

Initial velocity of rifle, u2 = 0 m/s

Final velocity of rifle, v2 = -0.473 m/s

Effective mass, M = m1 + m2

                             = 0.0255 + 28.0

                             = 28.0255 kg

Using the law of conservation of momentum,(m1 + m2) u2 = m1 v1 + m2 v2⇒

v2 = [(m1 + m2) u2 - m1 v1]/m2

v2 = [(0.0255 + 28.0) × 0 - 0.0255 × 530]/28.0

v2 = -0.473 m/s

Kinetic energy is given by the formula:

K = 1/2 mv²Kinetic energy of the rifle-shoulder combination before the shot is fired, K1 = 1/2 × M × 0² = 0 J

Kinetic energy of the rifle-shoulder combination after the shot is fired, K2 = 1/2 × M × (-0.473)² = 3.46 J

Therefore, the kinetic energy transferred to the rifle-shoulder combination is (3.46 - 0) J = 3.46 J.

Learn more about kinetic energy from this link:

https://brainly.com/question/8101588

#SPJ11


Related Questions

Momentum and Energy Multiple Choice Section. Make no marks. Bubble in best answer on Scantron sheet. 1) A student uses a spring to calculate the potential energy stored in the spring for various exten

Answers

Momentum and Energy Multiple Choice Section. Make no marks. Bubble in best answer on Scantron sheet. 1) A student uses a spring to calculate the potential energy stored in the spring for various extensions.

If the force constant of the spring is 500 N/m and it is extended from its natural length of 0.20 m to a length of 0.40 m, (a) 5.0 J

(b) 20 J

(c) 50 J

(d) 100 J

(e) 200 J

Answer:Option (a) 5.0 J Explanation: Given:

F = 500 N/mΔx = 0.4 - 0.2 = 0.2 m

The potential energy stored in the spring is given by the formula:

U = 1/2kΔx²

where k is the force constant of the spring.

Substituting the given values, we get:

U = 1/2 × 500 N/m × (0.2 m)²= 1/2 × 500 N/m × 0.04 m²= 1/2 × 500 N/m × 0.0016 m= 0.4 J

Therefore, the potential energy stored in the spring for the given extension is 0.4 J, which is closest to option (a) 5.0 J.

To know more about potential energy visit:

https://brainly.com/question/24284560

#SPJ11

You are involved in designing a wind tunnel experiment to test various construction methods to protect single family homes from hurricane force winds. Hurricane winds speeds are 100 mph and reasonable length scale for a home is 30 feet. The model is to built to have a length scale of 5 feet. The wind tunnel will operate at 7 atm absolute pressure. Under these conditions the viscosity of air is nearly the same as at one atmosphere. Determine the required wind speed in the tunnel. How large will the forces on the model be compared to the forces on an actual house?

Answers

The required wind speed in the wind tunnel is approximately 20 mph.

To determine the required wind speed in the wind tunnel, we need to consider the scale ratio between the model and the actual house. The given length scale for the home is 30 feet, while the model is built at a length scale of 5 feet. Therefore, the scale ratio is 30/5 = 6.

Given that the hurricane wind speeds are 100 mph, we can calculate the wind speed in the wind tunnel by dividing the actual wind speed by the scale ratio. Thus, the required wind speed in the wind tunnel would be 100 mph / 6 = 16.7 mph.

However, we also need to take into account the operating conditions of the wind tunnel. The wind tunnel is operating at 7 atm absolute pressure, which is equivalent to approximately 101.3 psi. Under these high-pressure conditions, the viscosity of air becomes different compared to one atmosphere conditions.

Fortunately, the question states that the viscosity of air in the wind tunnel at 7 atm is nearly the same as at one atmosphere. This allows us to assume that the air viscosity remains constant, and we can use the same wind speed calculated previously.

To summarize, the required wind speed in the wind tunnel to test various construction methods for protecting single-family homes from hurricane force winds would be approximately 20 mph, considering the given scale ratio and the assumption of similar air viscosity.

Learn more about wind speed

brainly.com/question/12005342

#SPJ11

A "blink of an eye" is a time interval of about 150 ms for an average adult. The "closure portion of the blink takes only about 55 ms. Let us model the closure of the upper eyelid as uniform angular acceleration through an angular displacement of 13.9". What is the value of the angular acceleration the eyelid undergoes while closing Trad's?

Answers

The value of the angular acceleration the eyelid undergoes while closing is approximately 4.4036 rad/s².

Angular displacement, Δθ = 13.9°

Time interval, Δt = 55 ms = 0.055 s

To convert the angular displacement from degrees to radians:

θ (in radians) = Δθ × (π/180)

θ = 13.9° × (π/180) ≈ 0.2422 radians

Now we can calculate the angular acceleration:

α = Δθ / Δt

α = 0.2422 radians / 0.055 s ≈ 4.4036 rad/s²

Therefore, the value of the angular acceleration the eyelid undergoes while closing is approximately 4.4036 rad/s².

The angular acceleration the eyelid undergoes while closing is approximately 4.4036 rad/s². This means that the eyelid accelerates uniformly as it moves through an angular displacement of 13.9° during a time interval of 55 ms.

The angular acceleration represents the rate of change of angular velocity, indicating how quickly the eyelid closes during the blink. By modeling the closure of the upper eyelid with uniform angular acceleration, we can better understand the dynamics of the blink and its precise timing.

Understanding such details can be valuable in various fields, including physiology, neuroscience, and even technological applications such as robotics or human-machine interfaces.

Learn more about acceleration at: https://brainly.com/question/460763

#SPJ11

If the absolute humidity of air is 19 mg/L, how many grams of
water vapor are there in 45 L of air? Be careful with units.

Answers

There are 0.855 grams of water vapor in 45 liters of air. To calculate the grams of water vapor in a given volume of air, we can multiply the absolute humidity by the volume of air.

Absolute humidity refers to the actual amount of moisture or water vapor present in the air, typically expressed in terms of mass per unit volume. It is a measure of the total moisture content regardless of the air temperature or pressure.

Absolute humidity is often expressed in units such as grams per cubic meter (g/m³) or milligrams per liter (mg/L). It represents the mass of water vapor present in a given volume of air.

Converting the given absolute humidity from milligrams per liter (mg/L) to grams per liter (g/L) we get:

Absolute humidity = 19 mg/L [tex]= 19 \times 10^{-3} g/L[/tex]

Multiplying the absolute humidity by the volume of air:

Grams of water vapor = [tex]Absolute humidity \times Volume of air[/tex]

Grams of water vapor = [tex]19 \times 10^{-3} g/L \times 45 L[/tex]

Grams of water vapor = 0.855 g

Therefore, there are 0.855 grams of water vapor in 45 liters of air.

Learn more about absolute humidity here:

https://brainly.com/question/31555072

#SPJ11

A magnifying glass has a focal length of 5.10 cm. (a) To obtain maximum magnification, how far from an object (in cm) should the magnifying glass be held so that the image is clear for someone with a normal eye? (Assume the near point of the eye is at -25.0 cm.) cm from the lens (b) What is the maximum angular magnification?

Answers

(a) The formula for magnification by a lens is given by m = (1+25/f) where f is the focal length of the lens and 25 is the distance of the near point from the eye.

Maximum magnification is obtained when the final image is at the near point.

Hence, we get: m = (1+25/f) = -25/di

Where di is the distance of the image from the lens.

The formula for the distance of image from a lens is given by:1/f = 1/do + 1/di

Here, do is the distance of the object from the lens.

Substituting do = di-f in the above formula, we get:1/f = di/(di-f) + 1/di

Solving this for di, we get:

di = 1/[(1/f) + (1/25)] + f

Putting the given values, we get:

di = 3.06 cm from the lens

(b) The maximum angular magnification is given by:

M = -di/feff

where feff is the effective focal length of the combination of the lens and the eye.

The effective focal length is given by:

1/feff = 1/f - 1/25

Putting the given values, we get:

feff = 4.71 cm

M = -di/feff

Putting the value of di, we get:

M = -0.65

Know more about magnification:

https://brainly.com/question/28350378

#SPJ4

Diffraction was first noticed in the 1600s by Francesco Maria Grimaldi. Isaac Newton observed diffraction as well. Thomas Young was the first to realize that light was a wave, which explains the production of the diffraction pattern. You shine light (640 nm) on a single with width 0.400 mm. (a) Find the width of the central maximum located 2.40 m from the slit. m (b) What is the width of the first order bright fringe?

Answers

(a) The width of the central maximum located 2.40 m from the slit can be calculated using the formula for the angular width of the central maximum in a single-slit diffraction pattern. It is given by θ = λ / w, where λ is the wavelength of light and w is the width of the slit. By substituting the values, the width is determined to be approximately 3.20 × 10^(-4) rad.(b) The width of the first order bright fringe can be calculated using the formula for the angular width of the bright fringes in a single-slit diffraction pattern. It is given by θ = mλ / w, where m is the order of the fringe. By substituting the values, the width is determined to be approximately 1.28 × 10^(-4) rad.

(a) To find the width of the central maximum, we use the formula θ = λ / w, where θ is the angular width, λ is the wavelength of light, and w is the width of the slit. In this case, the wavelength is 640 nm (or 640 × 10^(-9) m) and the slit width is 0.400 mm (or 0.400 × 10^(-3) m).

By substituting these values into the formula, we can calculate the angular width of the central maximum. To convert the angular width to meters, we multiply it by the distance from the slit (2.40 m), giving us a width of approximately 3.20 × 10^(-4) rad.

(b) To find the width of the first order bright fringe, we use the same formula θ = mλ / w, but this time we consider the order of the fringe (m = 1). By substituting the values of the wavelength (640 × 10^(-9) m), the slit width (0.400 × 10^(-3) m), and the order of the fringe (m = 1), we can calculate the angular width of the first order bright fringe. Multiplying this angular width by the distance from the slit (2.40 m), we find a width of approximately 1.28 × 10^(-4) rad.

Learn more about diffraction here:

https://brainly.com/question/12290582

#SPJ11

Final answer:

To find the width of the central maximum located 2.40 m from the slit, divide the wavelength by the slit width. To find the width of the first order bright fringe, multiply the wavelength by the distance from the slit to the screen and divide by the distance between the slit and the first order bright fringe.

Explanation:

To find the width of the central maximum located 2.40 m from the slit, we can use the formula:

θ = λ / w

where θ is the angle of the central maximum in radians, λ is the wavelength of light in meters, and w is the width of the slit in meters.

Plugging in the values, we have:

θ = (640 nm) / (0.400 mm)

Simplifying the units, we get:

θ = 0.640 × 10-6 m / 0.400 × 10-3 m

θ = 1.6 × 10-3 radians

To find the width of the first order bright fringe, we can use the formula:

w = (λL) / D

where w is the width of the fringe, λ is the wavelength of light in meters, L is the distance from the slit to the screen in meters, and D is the distance between the slit and the first order bright fringe in meters.

Plugging in the values, we have:

w = (640 nm × 2.4 m) / 0.400 mm

Simplifying the units, we get:

 

w = (640 × 10-9 m × 2.4 m) / (0.400 × 10-3 m)

w = 3.84 × 10-6 m

Learn more about Single-Slit Diffraction here:

https://brainly.com/question/34067294

#SPJ2

A dipole is formed by point charges +3.5 μC and -3.5 μC placed on the x axis at (0.30 m , 0) and (-0.30 m , 0), respectively. At what positions on the x axis does the potential have the value 7.3×105 V ?

Answers

The position on the x-axis where the potential has the value of 7.3 × 10^5 V is 0.76 m.

The formula used to find the electric potential is V=kq/r where k=9 × 10^9 N.m2/C2 is the Coulomb constant, q is the charge, and r is the distance between the charges. The electric potential from the positive charge is positive, while the electric potential from the negative charge is negative.

The electric potential produced by both charges can be calculated as follows:

V= k(+3.5μC)/r + k(-3.5μC)/rOr,

V= k[+3.5μC - 3.5μC]/rOr,

V= 0

Therefore, the electric potential is zero along the x-axis since both charges have an equal magnitude but opposite signs. Hence, there are no positions along the x-axis that have the electric potential value of 7.3 × 105 V. The given values in the question might have errors or typos since the question has no solution, or it could be a misleading question.

Learn more about electric potential here:

https://brainly.com/question/30880978

#SPJ11

5. A ladder of mass 15kg leans against a smooth frictionless vertical wall making an angle of 45° with it. The other end of the ladder rests on a rough horizontal floor. Assuming that the ladder is uniform, find the normal and the frictional force exerted by the horizontal floor on the ladder. (6 pts)

Answers

The normal force exerted by the horizontal floor on the ladder is equal to the weight of the ladder, which is 147 N. The frictional force exerted by the horizontal floor on the ladder depends on the coefficient of friction.

The normal force, denoted as N, is the perpendicular force exerted by a surface to support the weight of an object. In this case, the normal force exerted by the horizontal floor on the ladder will be equal to the weight of the ladder.

The weight of the ladder can be calculated using the formula: weight = mass × acceleration due to gravity. Given that the mass of the ladder is 15 kg and the acceleration due to gravity is approximately 9.8 m/s², we can calculate the weight as follows:

Weight of ladder = 15 kg × 9.8 m/s² = 147 N

Therefore, the normal force exerted by the horizontal floor on the ladder is 147 N.

Now let's consider the frictional force exerted by the horizontal floor on the ladder. The frictional force, denoted as f, depends on the coefficient of friction between the surfaces in contact. Since the ladder rests on a rough horizontal floor.

The frictional force can be calculated using the formula: frictional force = coefficient of friction × normal force.

To learn more about ladder -

brainly.com/question/33192846

#SPJ11

Part A In an L-R-C series circuit the source is operated at its resonant angular frequency. At this frequency, the reactance Xc of the capacitor is 210 22 and the voltage amplitude across the capacitor is 590 V. The circuit has R=316 12. What is the voltage amplitude of the source? Express your answer with the appropriate units. НА ? V = Value Units

Answers

Given, Resonant angular frequency,ω = 1/√(Lc)Reactance of the capacitor, Xc = 210 ΩVoltage across the capacitor, Vc = 590 VR = 316 Ω . The voltage amplitude of the source is 885 V.

We know that, Quality factor,

Q = R/Xc = R√(C/L)On substituting the given values, we get

Q = 316/210 = 1.5

Resonant frequency,

f = ω/2π = 50 Hz

We can also calculate L and C using the above equations.

L = 1/((2πf)²C)C = 1/((2πf)²L)

On substituting the values, we getL

= 2.7 mHC

= 12.2 nF

The voltage amplitude of the source, V = (VcQ)

= (590*1.5) V = 885 V

Therefore, the voltage amplitude of the source is 885 V.

To know more about Resonant visit :

https://brainly.com/question/31781948

#SPJ11

A student wishes to use a spherical concave mirror to make an astronomical telescope for taking pictures of distant galaxies. Where should the student locate the camera relative to the mirror? Near the focal point of the mirror On the surface of the mirror Infinitely far from the mirror Near the center of curvature of the mirror

Answers

The student should locate the camera near the focal point of the spherical concave mirror.

In order to create an astronomical telescope for taking pictures of distant galaxies using a spherical concave mirror, the camera should be positioned near the focal point of the mirror. This configuration allows the parallel light rays from the distant galaxies to converge to a focus at the focal point of the mirror. By placing the camera at or near this focal point, it will capture the converging light rays and create focused images of the galaxies.

Locating the camera on the surface of the mirror or infinitely far from the mirror would not produce clear and focused images. Placing the camera near the center of curvature of the mirror would result in the light rays diverging before reaching the camera, leading to unfocused images.

Therefore, positioning the camera near the focal point of the spherical concave mirror is the optimal choice for capturing sharp and detailed images of distant galaxies in an astronomical telescope setup.

learn more about spherical concave mirror here:

https://brainly.com/question/25937699

#SPJ11

A conducting sphere of radius a, having a total charge Q, is
situated in an electric field
initially uniform, Eo. Determine the potential at all points
outside the sphere.

Answers

The potential at all points outside the sphere is given by,V = Q / (4πε₀r) + Q / (4πε₀a)

We are given that a conducting sphere of radius a, having a total charge Q, is situated in an electric field initially uniform, Eo. We need to determine the potential at all points outside the sphere.Potential at any point due to a point charge Q at a distance of r from it is given by the equation,V = Q / (4πε₀r)

The conducting sphere will be at equipotential because the electric field is initially uniform. Due to this reason, the potential on its surface is also uniform and is given by the following equation,Vs = Q / (4πε₀a).The potential at any point outside the sphere due to a charge Q is the sum of the potentials at that point due to the sphere and the potential due to the charge. Hence, the total potential at any point outside the sphere is given by the following equation,where r is the distance of the point from the center of the sphere. Therefore, the potential at all points outside the sphere is given by,V = Q / (4πε₀r) + Q / (4πε₀a).

For further information on Potential visit :

https://brainly.com/question/33123810

#SPJ11

The potential at all points outside the sphere is V = kQ/r where r is the distance from the center of the sphere.

The potential at all points outside the sphere is V = kQ/r where r is the distance from the center of the sphere. If we calculate the potential at a distance r from the center of the sphere, we can use the formula:

V = kQ/r where Q is the total charge and k is Coulomb’s constant which equals 9 x 10^9 N.m²/C².

When we calculate the potential at different points outside the sphere, we get different values. When the distance r is infinity, the potential is zero. When r is less than the radius of the sphere a, the potential is the same as for a point charge. The potential inside the sphere is the same as the potential due to a point charge.

Learn more about potential:

https://brainly.com/question/15291588

#SPJ11

1. Two equal-mass hockey pucks undergo a glancing collision. Puck 1 is initially at rest and is struck by puck 2 travelling at a velocity of 13 m/s [E]. After the collision Puck 1 travels at an angle of [E 18° N] with a velocity of 20m/s . what is he velocity and direction of Puck 2 [ 4T] [4A)

Answers

The velocity and direction of Puck 2 after the glancing collision can be determined by solving equations based on conservation of momentum and kinetic energy.

In a glancing collision between two equal-mass hockey pucks, where Puck 1 is initially at rest and is struck by Puck 2 traveling at a velocity of 13 m/s [E], the resulting motion can be determined. After the collision, Puck 1 moves at an angle of [E 18° N] with a velocity of 20 m/s.

To find the velocity and direction of Puck 2 after the collision, we can use the principles of conservation of momentum and conservation of kinetic energy.

Since the masses of the pucks are equal, we know that the magnitude of the momentum before and after the collision will be the same.

Let's assume that Puck 2 moves at an angle θ with respect to the east direction. Using vector addition, we can break down the velocity of Puck 2 into its horizontal and vertical components. The horizontal component of Puck 2's velocity will be 13 cos θ, and the vertical component will be 13 sin θ.

After the collision, the horizontal component of Puck 1's velocity will be 20 cos (90° - 18°) = 20 cos 72°, and the vertical component will be 20 sin (90° - 18°) = 20 sin 72°.

To satisfy the conservation of momentum, the horizontal component of Puck 2's velocity must be equal to the horizontal component of Puck 1's velocity, and the vertical components must cancel each other out.

Therefore, we have:

13 cos θ = 20 cos 72° (Equation 1)

13 sin θ - 20 sin 72° = 0 (Equation 2)

Solving these equations simultaneously will give us the value of θ, which represents the direction of Puck 2. By substituting this value back into Equation 1, we can calculate the magnitude of Puck 2's velocity.

For more such questions on kinetic energy

https://brainly.com/question/30337295

#SPJ8

A motorist drives south at 20.0m/s for 3.00min, then turns west and travels at 25.0m/s for 2.00min, and finally travels northwest at 30.0m/s for 1.00min. For this 6.00min trip, find (a) the total vector displacement, (b) the average speed, and (c) the average velocity. Let the positive x axis point east.

Answers

(a) The total vector displacement of the motorist is approximately (-438.79 m, -78.79 m). (b) The average speed of the motorist for the 6.00 min trip is approximately 1.361 m/s.

To find the total vector displacement of the motorist, we can calculate the individual displacements for each segment of the trip and then find their sum.

Segment 1: South at 20.0 m/s for 3.00 min

Displacement = (20.0 m/s) * (3.00 min) * (-1) = -360.0 m south

Segment 2: West at 25.0 m/s for 2.00 min

Displacement = (25.0 m/s) * (2.00 min) * (-1) = -100.0 m west

Segment 3: Northwest at 30.0 m/s for 1.00 min

Displacement = (30.0 m/s) * (1.00 min) * (cos 45°, sin 45°) = 30.0 m * (√2/2, √2/2) ≈ (21.21 m, 21.21 m)

Total displacement = (-360.0 m south - 100.0 m west + 21.21 m north + 21.21 m east) ≈ (-438.79 m, -78.79 m

The total vector displacement is approximately (-438.79 m, -78.79 m).

To find the average speed, we can calculate the total distance traveled and divide it by the total time taken:

Total distance = 360.0 m + 100.0 m + 30.0 m ≈ 490.0 m

Total time = 3.00 min + 2.00 min + 1.00 min = 6.00 min = 360.0 s

Average speed = Total distance / Total time ≈ 490.0 m / 360.0 s ≈ 1.361 m/s

The average speed is approximately 1.361 m/s.

To find the average velocity, we can divide the total displacement by the total time:

Average velocity = Total displacement / Total time ≈ (-438.79 m, -78.79 m) / 360.0 s ≈ (-1.219 m/s, -0.219 m/s)

The average velocity is approximately (-1.219 m/s, -0.219 m/s) pointing south and west.

Learn more about vectors:

https://brainly.com/question/30466999

#SPJ11

If a car can just make it around a horizontal unbanked curve of radius 500 m. at 30 m/sec., and the car has a mass of 2000 kg., find the coefficient of static friction between the tires and the road.

Answers

Static friction is the force that opposes the motion between two surfaces in contact when there is no relative motion between them. The coefficient of static friction between the car's tires and the road is approximately 0.1837.

To determine the coefficient of static friction between the car's tires and the road, we can utilize the following formula that relates the maximum static friction to the centripetal force required for the circular motion:

f_s = m * a_c

Where:

f_s is the maximum static friction force,

m is the mass of the car, and

a_c is the centripetal acceleration.

To find the centripetal acceleration,

a_c = v² / r

Where:

v is the velocity of the car, and

r is the radius of the curve.

m = 2000 kg (mass of the car)

v = 30 m/s (velocity of the car)

r = 500 m (radius of the curve)

The centripetal acceleration:

a_c = (30 m/s)² / 500 m = 1.8 m/s²

Now, substituting the values into the formula for maximum static friction:

f_s = (2000 kg) * (1.8 m/s²) = 3600 N

The maximum static friction force (f_s) is equal to the normal force (N) multiplied by the coefficient of static friction (μ_s). In this case, the normal force is equal to the weight of the car (mg):

f_s = μ_s * N = μ_s * mg

Since the car is on a horizontal surface, the normal force (N) is equal to the weight of the car:

N = mg

Substituting the maximum static friction force:

3600 N = μ_s * (2000 kg) * g

Simplifying:

μ_s = 3600 N / (2000 kg * g)

The value of acceleration due to gravity (g) is approximately 9.8 m/s^2. Calculating the coefficient of static friction:

μ_s = 3600 N / (2000 kg * 9.8 m/s²) ≈ 0.1837

Therefore, the coefficient of static friction between the car's tires and the road is approximately 0.1837.

To know more about Static friction:

https://brainly.com/question/17140804

#SPJ4

Jane goes out for a run. She runs 10 miles West for 2 hours, then she stops suddenly and turns and runs North for 30 minutes while speeding up at a rate of 4.0×10 ^−3 [ m/s 2
]. She stops again, then runs with constant velocity of 5[ m/s] at 40 degrees North of East for 5 miles. HINT: you MUST draw a picture and choose a vector basis. a) Convert all quantities given to SI units. Must show work! b) Write out the displacement vector for each leg of the trip in vector notation. c) Find Jane's average velocity for the entire run. d) Find Jane's average speed for the entire run.

Answers

c) Jane's average velocity for the entire run cannot be determined without the values of the angle and acceleration for the Northward leg.

d) Jane's average speed for the entire run is the total distance traveled (16093.4 + 8046.7) meters divided by the total time taken (7200 + 1800) seconds.

a) Converting the given quantities to SI units:

1 mile = 1609.34 meters

10 miles = 10 * 1609.34 meters = 16093.4 meters

2 hours = 2 * 3600 seconds = 7200 seconds

30 minutes = 30 * 60 seconds = 1800 seconds

5 miles = 5 * 1609.34 meters = 8046.7 meters

b) Displacement vectors for each leg of the trip:

1. Westward leg: Displacement vector = -16093.4 meters * i (since it is in the West direction)

2. Northward leg: Displacement vector = (30 minutes * 60 seconds * 5.0 x 10^-3 m/s^2 * (0.5 * 1800 seconds)^2) * j (since it is in the North direction and speeding up)

3. Eastward leg: Displacement vector = 8046.7 meters * cos(40 degrees) * i + 8046.7 meters * sin(40 degrees) * j (since it is at an angle of 40 degrees North of East)

c) Jane's average velocity for the entire run:

To find the average velocity, we need to calculate the total displacement and divide it by the total time.

Total displacement = Sum of individual displacement vectors

Total time = Sum of individual time intervals

Average velocity = Total displacement / Total time

d) Jane's average speed for the entire run:

Average speed = Total distance / Total time

Note: Average velocity considers both the magnitude and direction of motion, while average speed only considers the magnitude.

Please calculate the values for parts c) and d) using the provided information and formulas.

learn more about "acceleration ":- https://brainly.com/question/460763

#SPJ11

1111. A giraffe, located 1.5m from the center of a Mary-go-round spins with a speed of 6m/s. There is a panda also in the Mary-go-round. How fast would a panda move if its 4.5m from the center(10pts)? what is the angular speed of the Mary-go-round(10pts)?

Answers

The panda would move with a speed of 18 m/s, and the angular speed of the Mary-go-round is 4 rad/s.

The linear speed of an object moving in a circle is given by the product of its angular speed and the distance from the center of the circle. In this case, we have the giraffe located 1.5m from the center and moving with a speed of 6 m/s. Therefore, we can calculate the angular speed of the giraffe using the formula:

Angular speed = Linear speed / Distance from the center

Angular speed = 6 m/s / 1.5 m

Angular speed = 4 rad/s

Now, to find the speed of the panda, who is located 4.5m from the center, we can use the same formula:

Speed of the panda = Angular speed * Distance from the center

Speed of the panda = 4 rad/s * 4.5 m

Speed of the panda = 18 m/s

So, the panda would move with a speed of 18 m/s, and the angular speed of the Mary-go-round is 4 rad/s.

Learn more about angular speed:

brainly.com/question/29058152

#SPJ11

Write a question that calculates the pressure of a container of gas whose temperature increases from 140 Kelvin to 400 Kelvin, and the pressure if that container then increases to three times its original volume. Draw out a sketch, and then answer it.

Answers

The pressure of the gas in the container can be calculated using the ideal gas law equation: P1 * V1 / T1 = P2 * V2 / T2.

To calculate the pressure of the gas in the container, we can use the ideal gas law equation, which relates pressure (P), volume (V), and temperature (T) of a gas. The ideal gas law equation is written as P1 * V1 / T1 = P2 * V2 / T2, where P1 and T1 are the initial pressure and temperature, V1 is the initial volume, P2 is the final pressure, T2 is the final temperature, and V2 is the final volume.

In the given question, the temperature increases from 140 Kelvin to 400 Kelvin. Let's assume the initial pressure is P1 and the initial volume is V1. Since only the temperature changes, we can set P2 and V2 as unknown variables. We are given that the container then increases to three times its original volume, which means V2 = 3V1.

Substituting the given values and variables into the ideal gas law equation, we get P1 * V1 / 140 = P2 * (3V1) / 400. Simplifying this equation, we find that P2 = (3 * 400 * P1) / (140).

Therefore, the pressure of the container of gas after the temperature increase and volume change can be calculated by multiplying the initial pressure by (3 * 400) / 140.

Learn more about Gas

brainly.com/question/14812509

#SPJ11

A distant star has a single planet circling it in a circular orbit of radius 2.68×10 ^11 m. The period of the planet's motion about the star is 740 days. What is the mass of the star? The value of the universal gravitational constant is 6.67259×10 ^−11 N⋅m 2/kg2.
Assume that it takes 90 minutes for a satellite near the Earth's surface to orbit around Earth of radius R E . What distance does a geo-synchronous satellite (i.e. has a period around the Earth of 24 hours) have to be from Earth? 1. 3R E

2. 6R E

3. 13R E

4. 24R E

5. 16R E

Answers

The mass of the star is 9.77 * 10^30 kg.

The distance of a geo-synchronous satellite from Earth is 42,164 km.

Here is the solution for the mass of the star:

We can use Kepler's third law to calculate the mass of the star. Kepler's third law states that the square of the period of a planet's orbit is proportional to the cube of the semi-major axis of its orbit. In this case, the period of the planet's orbit is 740 days, and the semi-major axis of its orbit is 2.68 * 10^11 m. Plugging in these values, we get:

T^2 = a^3 * k

where:

* T is the period of the planet's orbit in seconds

* a is the semi-major axis of the planet's orbit in meters

* k is Kepler's constant (6.67259 * 10^-11 N⋅m^2/kg^2)

(740 * 24 * 60 * 60)^2 = (2.68 * 10^11)^3 * k

1.43 * 10^16 = 18.3 * 10^23 * k

k = 7.8 * 10^-6

Now that we know the value of Kepler's constant, we can use it to calculate the mass of the star. The mass of the star is given by the following formula

M = (4 * π^2 * a^3 * T^2) / G

where:

* M is the mass of the star in kilograms

* a is the semi-major axis of the planet's orbit in meters

* T is the period of the planet's orbit in seconds

* G is the gravitational constant (6.67259 * 10^-11 N⋅m^2/kg^2)

M = (4 * π^2 * (2.68 * 10^11)^3 * (740 * 24 * 60 * 60)^2) / (6.67259 * 10^-11)

M = 9.77 * 10^30 kg

Here is the solution for the distance of the geo-synchronous satellite from Earth:

The geo-synchronous satellite is in a circular orbit around Earth, and it has a period of 24 hours. The radius of Earth is 6371 km. The distance of the geo-synchronous satellite from Earth is given by the following formula

r = a * (1 - e^2)

where:

* r is the distance of the satellite from Earth in meters

* a is the semi-major axis of the satellite's orbit in meters

* e is the eccentricity of the satellite's orbit

The eccentricity of the geo-synchronous satellite's orbit is very close to zero, so we can ignore it. This means that the distance of the geo-synchronous satellite from Earth is equal to the semi-major axis of its orbit. The semi-major axis of the geo-synchronous satellite's orbit is given by the following formula:

a = r_e * sqrt(GM/(2 * π^2))

where:

* r_e is the radius of Earth in meters

* G is the gravitational constant (6.67259 * 10^-11 N⋅m^2/kg^2)

* M is the mass of Earth in kilograms

* π is approximately equal to 3.14

a = 6371 km * sqrt(6.67259 * 10^-11 * 5.972 * 10^24 / (2 * (3.14)^2))

a = 42,164 km

Therefore, the distance of the geo-synchronous satellite from Earth is 42,164 km.

Learn more about mass with the given link,

https://brainly.com/question/86444

#SPJ11

The displacement equation of a standing wave on a string fixed at both ends is = 0.10 sin 5x cos4πt where y and x are in meters and t is in second. It produces for loops. (i) What is the wavelength and wave speed of the individual waves? (ii) Find the length of the string. (iii) Is there a node or antinode at x = 0?(iv) Write down the individual equations of the waves whose resultant is the standing wave.

Answers

The resultant of four waves is the standing wave given by y = 0.10 sin 5x cos(4πt)

Therefore, these are the individual equations of the waves whose resultant is the standing wave.

The displacement equation of a standing wave on a string fixed at both ends is y = 0.10 sin 5x cos(4πt) where y and x are in meters and t is in seconds. It produces four loops.

(i) The displacement equation is given by

y = 0.10 sin 5x cos(4πt)

The amplitude A of the wave is 0.1 m.

The angular frequency ω of the wave is 4π rad/s.

The wave number k is given by k = 5 m^–1.

The wavelength λ of the wave is given by

λ = 2π/kλ

= 2π/5

= 1.26 m

The wave speed v is given by

v = ω/k

= 4π/5

= 2.51 m/s

(ii) For a standing wave, the length of the string L is half the wavelength of the wave.

Thus, L = λ/2

= 1.26/2

= 0.63 m

(iii) At a node of a standing wave, there is zero displacement. Thus, y = 0 at x = 0.

We can substitute these values into the given equation to find that cos(0) = 1 and sin(0) = 0.

Therefore, y = 0.

(iv) The individual waves that make up the standing wave can be found by taking the sum of the waves moving in the opposite direction.

For a standing wave, the individual waves have the same amplitude and frequency, but are moving in opposite directions. Thus, the individual waves can be written as

y1 = 0.05 sin 5x cos(4πt)

y2 = 0.05 sin 5x cos(4πt + π)

y3 = –0.05 sin 5x cos(4πt)

y4 = –0.05 sin 5x cos(4πt + π)

The resultant of these four waves is the standing wave given by y = 0.10 sin 5x cos(4πt)

Therefore, these are the individual equations of the waves whose resultant is the standing wave.

To know more about standing wave, visit:

https://brainly.com/question/14176146

#SPJ11

If the food has a total mass of 1.3 kg and an average specific heat capacity of 4 kJ/(kg·K), what is the average temperature increase of the food, in degrees Celsius?

Answers

If the food has a total mass of 1.3 kg and an average specific heat capacity of 4 kJ/(kg·K),  1.25°C is the average temperature increase of the food, in degrees Celsius?

The equation for specific heat capacity is C = Q / (m T), where C is the substance's specific heat capacity, Q is the energy contributed, m is the substance's mass, and T is the temperature change.

The overall mass in this example is 1.3 kg, and the average specific heat capacity is 4 kJ/(kgK). We are searching for the food's typical temperature increase in degrees Celsius.

Let's assume that the food's original temperature is 20°C. The food's extra energy can be determined as follows:

Q = m × C × ΔT                                                                                                                                                                                                 where Q is the extra energy, m is the substance's mass, C is its specific heat capacity, and T is the temperature change.

Q=1.3 kg*4 kJ/(kg*K)*T

Q = 5.2 ΔT kJ

Further, the temperature change can be calculated as follows:

ΔT = Q / (m × C)

T = 5.2 kJ / (1.3 kg x 4 kJ / (kg x K))

ΔT = 1.25 K

Hence, the food's average temperature increase is 1.25°C.  

Learn more about Average Temperature at

brainly.com/question/28041542

#SPJ4

Cyclotrons are widely used in nuclear medicine for producing short-lived radioactive isotopes. These cyclotrons typically accelerate H- (the hydride ion, which has one proton and two electrons) to an energy of 5 MeV to 20 MeV. A typical magnetic field in such cyclotrons is 2T. (a) What is the speed of a 10MeV H.? (b) If the H- has KE=10MeV and B=2T, what is the radius of this ion's circular orbit? (eV is electron- volts, a unit of energy; 1 eV =0.16 fJ) (c) How many complete revolutions will the ion make if the cyclotron is left operating
for 5 minutes?

Answers

(a) The speed of a 10 MeV H- ion can be calculated using relativistic equations,(b) The radius of the ion's circular orbit can be determined by balancing the magnetic force and the centripetal force acting on the ion,(c) The number of complete revolutions made by the ion can be calculated by considering the time period of one revolution and the total operating time of the cyclotron.

(a) To find the speed of a 10 MeV H- ion, we can use the relativistic equation E = γmc², where E is the energy, m is the rest mass, c is the speed of light, and γ is the Lorentz factor. By solving for v (velocity), we can find the speed of the ion.

(b) The radius of the ion's circular orbit can be determined by equating the magnetic force (Fm = qvB) and the centripetal force (Fc = mv²/r), where q is the charge of the ion, v is its velocity, B is the magnetic field strength, m is the mass of the ion, and r is the radius of the orbit.

(c) The number of complete revolutions made by the ion can be calculated by considering the time period of one revolution and the total operating time of the cyclotron. The time period can be determined using the velocity and radius of the orbit, and then the number of revolutions can be found by dividing the total operating time by the time period of one revolution.

By applying these calculations and considering the given values of energy, magnetic field strength, and operating time, we can determine the speed, radius of the orbit, and number of revolutions made by the H- ion in the cyclotron.

Learn more about cyclotrons from the given link:

https://brainly.com/question/6775569

#SPJ11

Given the following values:
Tube 1
radius 1= 40 mm
mass 1= 250 g
Tube 2
radius 2= 30 mm
mass 2= 200 g
Density of fluid= 1 g/cm3
Find h1 and h2

Answers

Given,Radius of the tube 1 = 40 mmRadius of the tube 2 = 30 mmMass of the tube 1 = 250 gMass of the tube 2 = 200 gDensity of fluid = 1 g/cm³The formula to calculate h₁ and h₂ is as follows: Pressure at A + 1/2 ρv₁² + ρgh₁ = Pressure at B + 1/2 ρv₂² + ρgh₂As the fluid in the tubes is at rest, the velocity of the fluid at point A and point B is zero.v₁ = v₂ = 0

Hence the above equation reduces to,Pressure at A + ρgh₁ = Pressure at B + ρgh₂Let’s calculate the pressure at A and pressure at B as follows:Pressure at A = 0Pa (Atmospheric pressure)Pressure at B = ρghIn order to calculate h, we need to equate the pressure at A and B. Hence,ρgh₁ = ρgh₂g and ρ are common on both sides of the equation. They can be cancelled.So, h₁ = h₂Hence, the solution for the given problem is that the height of the liquid in both tubes is the same i.e. h₁ = h₂.

To know more about calculate visit:

https://brainly.com/question/30151794

#SPJ11

A spring oscillator is slowing down due to air resistance. If
the damping constant is 354 s, how long will it take for the
amplitude to be 32% of it’s initial amplitude?

Answers

A spring oscillator is slowing down due to air resistance. If the damping constant is 354 s, it will take 0.12 seconds for the amplitude of the spring oscillator to decrease to 32% of its initial amplitude.

The time it takes for the amplitude of a damped oscillator to decrease to a certain fraction of its initial amplitude is given by the following equation : t = (ln(A/A0))/(2*b)

where,

t is the time in seconds

A is the final amplitude

A0 is the initial amplitude

b is the damping constant

In this problem, we are given that A = 0.32A0 and b = 354 s.

We can solve for t as follows:

t = (ln(0.32))/(2*354)

t = 0.12 seconds

Therefore, it will take 0.12 seconds for the amplitude of the spring oscillator to decrease to 32% of its initial amplitude.

To learn more about amplitude :

https://brainly.com/question/3613222

#SPJ11

A 50 kg brick slides down a rough inclined plane. Angle = 26 °, coefficient of kinetic friction between the brick and the inclined plane is 0.44. what is the magnitude of the kinetic friction force acting on the brick?

Answers

The magnitude of the kinetic friction force acting on the brick is approximately 196.47 Newtons.

The normal force is the force exerted by the inclined plane on the brick perpendicular to the plane. It can be calculated using the equation: N = m * g * cos(theta), where m is the mass of the brick, g is the acceleration due to gravity (approximately 9.8 m/s²), and theta is the angle of the inclined plane.

N = 50 kg * 9.8 m/s² * cos(26°)

The friction force is given by the equation: F_friction = coefficient_of_friction * N, where the coefficient_of_friction is the kinetic friction coefficient between the brick and the inclined plane.

F_friction = 0.44 * N

Substituting the value of N from Step 1:

F_friction = 0.44 * (50 kg * 9.8 m/s² * cos(26°))

Calculating the value:

F_friction = 0.44 * (50 * 9.8 * cos(26°))

F_friction ≈ 196.47 N

To learn more about inclined plane -

brainly.com/question/32577122

#SPJ11

equipotentials. In a region (xy plane), the potential between x=0 and x=6.00 m satisfies the equation V =a+bx where a=10.0 V and b=+7.00 V/m. Determine:
a) the electric potential at x=0, x=3.00 m and x=6.00 m.
b) the magnitude and direction of the electric field at x=0, x=3.00 m and x=6.00 m. Use the relationship ⃗ E=−∇⃗ V which in one dimension corresponds to Ex=−dV/dx.
c) Make a drawing of some equipotentials in the xy plane and of the field lines in the xy plane in the region between x=0 and x=6.00 m.
d) If a positive charge of value 1.0 μC and mass 4.0 g is released from rest at x=3.00, calculate the speed it attains in advancing a distance of 3.00 m. Between which points does it move?

Answers

The electric potential is  - 7.00 V/m. the magnitude of the electric field at x = 0, x = 3.00 m, and x = 6.00 m is 7.00 V/m.The change in its potential energy is  2.10 × 10-5 J.The charged particle moves between x = 3.00 m and x = 6.00 m.

To determine the electric potential at x = 0, x = 3.00 m and x = 6.00 m, substitute the given values of a, b, and x in the equation V = a + bx. Here's how to compute it:

For x = 0, V =  10.0 V,For x = 3.00 m, V = a + bx

10.0 + (7.00 V/m)(3.00 m) = 31.0 V.

For x = 6.00 m, V = a + bx

10.0 + (7.00 V/m)(6.00 m) = 52.0 V

To determine the magnitude and direction of the electric field at x = 0, x = 3.00 m, and x = 6.00 m, use the relationship ⃗E = −V, which in one dimension corresponds to Ex=−dV/dx. Thus:For x = 0,E = - dV/dx|0

- (7.00 V/m) = - 7.00 V/m,

pointing in the negative x-direction.

For x = 3.00 m,E = - dV/dx|3

- (7.00 V/m) = - 7.00 V/m ,

pointing in the negative x-directionFor x = 6.00 m,E = - dV/dx|6 = - (7.00 V/m) = - 7.00 V/m pointing in the negative x-direction.

Therefore, the magnitude of the electric field at x = 0, x = 3.00 m, and x = 6.00 m is 7.00 V/m, and it points in the negative x-direction.

The equipotentials in the xy-plane and field lines in the xy-plane in the region between x = 0 and x = 6.00 m are illustrated in the following figure.

The contour lines in the figure represent the equipotentials, which are perpendicular to the electric field lines. They are uniformly spaced, indicating that the electric field is constant and uniform. Since the electric field is uniform, the electric field lines are also uniformly spaced and parallel. Since the electric field is directed from positive to negative, the electric field lines are directed from positive to negative in the x-direction.

The potential energy of the charged particle at x = 3.00 m is Ep = qV

(1.0 × 10⁻⁶ C)(31.0 V) = 3.10 × 10⁻⁵ J.

Therefore, the kinetic energy of the particle at x = 0 is equal to its potential energy at x = 3.00 m, or KE = 3.10 × 10⁻⁵ J. The total energy of the particle is conserved, so at x = 6.00 m, the sum of the kinetic and potential energy of the particle is equal to its total energy. Thus, KE + Ep = ET. or KE = ET - Ep.

The velocity of the charged particle at x = 6.00 m is v = sqrt(2KE/m), where m is the mass of the particle. Substituting the given values of KE, m, and v, the speed is calculated as:

v = √[(2KE)/(m)]

√[(2(ET - Ep))/(m)] = √[(2[(4.0 × 10⁻³ kg)(7.00 V/m)(3.00 m)] - (3.10 × 10⁻⁵J))/(4.0 × 10⁻³ kg)]

√[(2[(4.0 × 10⁻³ kg)(7.00 V/m)(3.00 m)] - (3.10 × 10⁻⁵ J))/(4.0 × 10⁻³ kg)] = 0.60 m/s.

The charged particle moves between x = 3.00 m and x = 6.00 m.

Therefore, the change in its potential energy is ΔEp = qΔV

(1.0 × 10⁻⁶ C)(52.0 V - 31.0 V) = 2.10 × 10⁻⁵ J.

To know more about electric field lines visit:

brainly.com/question/3405913

#SPJ11

Which of the following is/are true about the tires?
(A) The direction of the frictional force acting on the front tire and the rear tire of a bicycle is opposite when the bicycle is accelerating along a straight line;
(B) Given two tires which have the same contact surface area on the road and are made of the same material. In dry weather, the one with tread has better traction on the road than that of the one without tread
(C) The directional tires perform better than the non-directional tines in wed weather;
(D) Both (A) and (C).

Answers

Tread patterns on tires, the frictional force on the rear tire is in the backward direction, providing the necessary traction for the bicycle to move forward. And directional tires, designed with specific tread patterns to channel water away from the center of the tire, perform better than non-directional tires in wet weather.

Statement (A) is true. When a bicycle is accelerating along a straight line, the frictional force acting on the front tire is in the forward direction, opposite to the direction of motion.

Statement (B) is true. Tires with tread patterns provide better traction on the road in dry weather compared to tires without tread. The tread patterns help to increase the surface area of contact between the tire and the road, improving grip and reducing the likelihood of slipping.

Statement (C) is also true. The directional tread patterns enhance water dispersion, reducing the risk of hydroplaning and improving traction on wet surfaces.

Therefore, the correct answer is (D) Both (A) and (C) are true.

To learn more about, frictional force, click here, https://brainly.com/question/30280206

#SPJ11

Two objects, A and B, are pushed with the same net force over the same distance. B is more massive than A and they both start at rest. Which one ends up with more momentum? А B They have the same final momentum Not enough information

Answers

B will end up with more momentum.

The momentum of a moving object is determined by its mass and velocity.

The object with the greater mass would have more momentum.

So, in the given scenario, object B is more massive than A, therefore it will end up with more momentum.

The momentum of an object is the product of its mass and velocity, p = mv.

The greater the mass or velocity of an object, the greater its momentum.

Because object B has greater mass than A and both are given the same net force over the same distance, object B will end up with more momentum. So the correct answer is B will end up with more momentum.

Learn more about the momentum:

brainly.com/question/402617

#SPJ11

A light rod of length l = 2.00 m rotates about an axis perpendicular to its length and passing through its center as in the figure. Two point particles of masses m1=4.60 kg and m2=3.30 kg are connected to the ends of the rod. Neglecting the mass of the rod, what is rotational kinetic energy of the system of these two particles when the angular speed of this system is 2.60 rad/s? (A) 15.8) (B) 29.2 J (C) 45.5 J (D) 58.5 J (E) 75.2)

Answers

The rotational kinetic energy of the system of the two particles is approximately 26.95 J.

The rotational kinetic energy of a system can be calculated using the formula:

Rotational kinetic energy = (1/2) * I * ω²

where I is the moment of inertia and ω is the angular speed.

In this case, we have two point particles connected to the ends of a light rod, so the moment of inertia of the system can be calculated as the sum of the individual moments of inertia.

The moment of inertia of a point particle rotating about an axis perpendicular to its motion and passing through its center is:

I = m * r²

where m is the mass of the particle and r is the distance of the particle from the axis of rotation.

Let's calculate the rotational kinetic energy for the system:

For the particle with mass m1 = 4.60 kg:

Moment of inertia of m1 = m1 * r1²

= 4.60 kg * (1/2 * 2.00 m)²

= 4.60 kg * 1.00 m²

= 4.60 kg * 1.00

= 4.60 kg·m²

For the particle with mass m2 = 3.30 kg:

Moment of inertia of m2 = m2 * r2²

= 3.30 kg * (1/2 * 2.00 m)²

= 3.30 kg * 1.00 m²

= 3.30 kg * 1.00

= 3.30 kg·m²

Total moment of inertia of the system:

I_total = I1 + I2

= 4.60 kg·m² + 3.30 kg·m²

= 7.90 kg·m²

The angular speed ω = 2.60 rad/s, we can now calculate the rotational kinetic energy:

Rotational kinetic energy = (1/2) * I_total * ω²

= (1/2) * 7.90 kg·m² * (2.60 rad/s)²

= (1/2) * 7.90 kg·m² * 6.76 rad²/s²

= 26.95 kg·m²/s²

= 26.95 J

Therefore, the rotational kinetic energy of the system of the two particles is approximately 26.95 J.

Learn more about Rotational kinetic energy from the given link

https://brainly.com/question/30459585

#SPJ11

Example: A block attached to an ideal horizontal spring undergoes a simple harmonic motion about the equilibrium position (x = 0) with an amplitude A = 10 cm. The mechanical energy of the system is 16 J. What is the kinetic energy of the block when x = 5.0 cm?

Answers

The kinetic energy of the block when its displacement is 5.0 cm from the equilibrium position is 8 J.

In a simple harmonic motion, the total mechanical energy of the system is the sum of the potential energy and kinetic energy. Given that the mechanical energy is 16 J, we can use this information to find the kinetic energy of the block at a specific displacement.

At the equilibrium position (x = 0), the entire mechanical energy is in the form of potential energy, and the kinetic energy is zero. As the block moves away from the equilibrium position, the potential energy decreases, and the kinetic energy increases.

Since the amplitude A is given as 10 cm, the maximum potential energy is equal to the maximum kinetic energy. Therefore, at a displacement of 5.0 cm from the equilibrium, the potential energy and kinetic energy are equal.

To calculate the kinetic energy, we can subtract the potential energy at x = 5.0 cm from the total mechanical energy. Since the potential energy is 8 J at this displacement (half of the total mechanical energy), the kinetic energy will also be 8 J.

To learn more about kinetic energy click here:

brainly.com/question/999862

#SPJ11

Please write down enough detail to demonstrate your understanding and explain it. Eric posts a timelapse video of the very large pressure chamber he built for fun. Inside the chamber, he puts an unusually large balloon with helium inside which he says is a 2.40-mol sample. The chamber is in his basement which stays at a steady 290K, which includes the inside of the chamber. He can very slowly adjust the pressure of the chamber, which means the pressure inside the balloon is approximately the same pressure. The time lapse starts with the display showing a pressure of 0.400 atm is compressed slowly enough to assume it is isothermal until it reaches 1.00 atm. In these conditions you can assume the helium behaves as an ideal gas.
(a) Find the final volume of the balloon.
m3
(b) Find the work done on the gas. Enter as a positive number. (note the units here!).
kJ
(c) Find the energy transferred by heat. Be aware of the units! Use a positive number if heat is absorbed by the balloon, and a negative number if heat is released by the balloon.
kJ
(d) Extra Credit: How many grams of helium are in the balloon?
grams

Answers

The final volume of the balloon is  18.2 L. the work done on the gas. Enter as a positive number is -1.55 kJ. the energy transferred by heat is -1.55 kJ. Grams in Helium are in the balloon is 9.6 g.

(a) The final volume of the balloon is to be determined. Initial volume, V₁ = (2.40 mol x 8.31 J K⁻¹ mol⁻¹ x 290 K)/0.400 atm = 45.5 LFinal pressure, P₂ = 1.00 atm Initial pressure, P₁ = 0.400 atm According to Boyle’s law:P₁V₁ = P₂V₂V₂ = P₁V₁/P₂ = (0.400 atm x 45.5 L)/1.00 atmV₂ = 18.2 L

(b) The work done on the gas is to be determined. The process is isothermal, and for this case, the work done on the gas is given by:W = nRT ln(V₂/V₁)W = (2.40 mol x 8.31 J K⁻¹ mol⁻¹ x 290 K) ln (18.2/45.5)W = -1552 J = -1.55 kJ Therefore, the work done on the gas is -1.55 kJ

(c) The energy transferred by heat is to be determined. For an isothermal process, the heat transferred is equal to the work done. Therefore, the energy transferred by heat is -1.55 kJ.

(d) The mass of the helium in the balloon is to be determined. Molar mass of helium, M = 4.00 g/mol Number of moles, n = 2.40 molMass of helium, m = nM = 2.40 mol x 4.00 g/mol = 9.6 g Therefore, there are 9.6 g of helium in the balloon.

To know more about Helium refer here:

https://brainly.com/question/5596460#

#SPJ11

Other Questions
please answer ASAP I will brainlist The power of a toaster can be determined if which of the following values are known? A the dimensions of the toaster B C the resistance of the toaster's insulation the voltage applied to the toaster and the toaster's temperature D the current through the circuit and the voltage applied to the toaster pls help if you can asap!!!! You recently attended a seminar for encouraging the study of science in students, where a respected scientist gave an inspiring speech about the need for promoting science. write a descriptive paragraph in 100-150 words describing about the scientist An electron that is moving through a uniform magnetic held has velocity 7 = 40.0 km/sli+ /33 0km/s) 7 when it experiencesa force h = (421 are + (stor) " due to the maenetic held. If B, = 0, calculate the magnetic held B Determine the fugacity and fugacity coefficients of methane using the Redlich-Kwong equation of state at 300 K and 10 bar. Write all the assumptions made. The physician orders 400 mg of Keflex to be added to 100 mL of D5W IVPB to be administered over 45 minutes q 8 hours. The stock supply is a vial containing 1 gram of Keflex. Directions say to reconstitute with 4.5 mL of normal saline to yield a concentration of 200 mg/1 mL. The drop factor is 15 gtt/ml. How many mL will be added to the D5W for the correct dose? 400 mL 1.8 mL 100 mL 4.5 mL 2 mL 5 A person with paraplegia resulting from a complete spinal cord injuryA.is likely to walk independently B.is likely to use a wheelchair, but still have full function of upper limbs C.is likely to experience loss of movement, but only on one side of the body D.is likely to experience loss of functioning to some extent in all four limbs What is the difference between a strong and weakorganizational culture, and which is preferable?Why are successful companies less likely tochange? Find an invertible matrix P and a diagonal matrix D such that P1AP=D.A = (13 30 0 )(5 12 0 )(2 6 0 ) which type of agency is not recognized in georgia? single agency undisclosed dual agency designated agency buyers agency When the price of hot dogs decreases, what happens in the market for the complementary good of hot dog buns? asupply decreases, decreasing price and quantity bdemand increases, increasing price and quantity cdemand decreases, decreasing price and quantity dsupply increases, increasing price and quantity Which of the following tables represents a linear relationship that is also proportional? x 1 0 1 y 0 2 4 x 3 0 3 y 2 1 0 x 2 0 2 y 1 0 1 x 1 0 1 y 5 2 1 Emergency medicine question: treatment of Heat Stroke QUESTIONS 8 Choose all of the following functions of the skeleton O SupportO protection O movement O electrolyte balance O blood cell reductionO acid-base balance QUESTION 9 Choose all of the correct function of the muscular system O movement O stability O inhibits communication O controls body openings O heat production Draw the hungarian symbol for es QUESTION 1 The smallest independently functioning biological unit of an organism is a(n). cell molecule organ tissue QUESTION 2 A collection of similar tissues that performs a specific function is an organ organelle organism organ system QUESTION 3 The body system responsible for structural support and movement is the cardiovascular system endocrine system muscular system skeletal system Carlisle Transport had $4,499 cash at the beginning of the period. During the period, the firm collected $1,750 in receivables, paid $2,154 to supplier, had credit sales of $5,578, and incurred cash expenses of $500. What was the cash balance at the end of the period? A concave mirror produces a virtual image that is 3.00 times as large as the object. a. If the object is 30.0 cm in front of the mirror, what is the image distance? A place-kicker must kick a football from a point 36.0 m (about 40 yards) from the goal. Half the crowd hopes the ball will clear the crossbar, which is 3.05 m high. When kicked, the ball leaves the ground with a speed of 23.2 m/s at an angle of 52.0 to the horizontal. Answer parts a-b.