1. Distinguish between: a) Metallic conduction and electrolytic con- duction. b) Standard electrode potential and corro- sion potential. c) Anode and cathode. d) Electronic conduction and ionic conduc

Answers

Answer 1

a) Metallic conduction and electrolytic conduction: Metallic conduction is the flow of electric current in metals due to the movement of delocalized electrons, while electrolytic conduction is the flow of electric current in electrolytes through the movement of ions.

a) Metallic conduction occurs in metals, where there is a sea of delocalized electrons that are free to move throughout the material. When a potential difference is applied across the metal, these electrons drift in the direction of the electric field, resulting in the flow of electric current. Metallic conduction is characterized by the movement of electrons, which are negatively charged particles.

On the other hand, electrolytic conduction occurs in electrolytes, which are solutions containing ions. When an electrolyte is placed in an electric field, the positive ions (cations) migrate towards the negative electrode (cathode), while the negative ions (anions) migrate towards the positive electrode (anode). This movement of ions results in the flow of electric current through the solution. Electrolytic conduction is characterized by the movement of ions, which are charged particles.

metallic conduction involves the movement of electrons in metals, while electrolytic conduction involves the movement of ions in electrolytes.

Learn more about cathode : brainly.com/question/11920555

#SPJ11


Related Questions

Zn (s) | Zn²+ (aq) || Cr³+ (aq) | Cr(s) o Assignment: Given the following notation for a voltaic cell Draw a diagram of the cell illustrating the anode, cathode, salt bridge, electrodes with their respective ions in solution and include a meter of voltage (voltmeter) Write the oxidation and reduction reactions. Determine the electrons transferred. write the net reaction Determine the emf (voltage) of the cell Calculate the net wo

Answers

Anode: Zn (s)

Cathode: Cr³+ (aq)

Salt bridge: ||

Oxidation reaction: Zn (s) -> Zn²+ (aq) + 2e-

Reduction reaction: Cr³+ (aq) + 3e- -> Cr (s)

Electrons transferred: 2 electrons in the oxidation reaction and 3 electrons in the reduction reaction.

Net reaction: Zn (s) + Cr³+ (aq) -> Zn²+ (aq) + Cr (s)

EMF (Voltage) of the cell: 0.02 V

Net work: -3.86 kJ (negative value indicates work is done on the system)

Diagram of the Voltaic Cell:  Zn (s) | Zn²+ (aq) || Cr³+ (aq) | Cr (s)

Anode: Zn (s)

Cathode: Cr³+ (aq)

Salt bridge: ||

              | Salt Bridge |

    Zn²+ (aq)  ||  Cr³+ (aq)

            _______________

             |                                |

          |   Voltmeter               |

            |_______________|

Oxidation reaction (at the anode):

Zn (s) -> Zn²+ (aq) + 2e-

Reduction reaction (at the cathode):

Cr³+ (aq) + 3e- -> Cr (s)

Electrons transferred:

2 electrons are transferred in the oxidation reaction (Zn -> Zn²+)

3 electrons are transferred in the reduction reaction (Cr³+ + 3e- -> Cr)

Net reaction:

Zn (s) + Cr³+ (aq) -> Zn²+ (aq) + Cr (s)

EMF (Voltage) of the cell:

The EMF of the cell can be determined using the standard reduction potentials of Zn²+ and Cr³+ ions. The standard reduction potential for Zn²+ is -0.76 V, and for Cr³+ is -0.74 V. The EMF of the cell is the difference between the reduction potentials:

EMF = E°(cathode) - E°(anode)

EMF = -0.74 V - (-0.76 V)

EMF = 0.02 V

The net work done by the cell can be calculated using the equation:

Work = -nFEMF

where n is the number of moles of electrons transferred, F is the Faraday constant (96485 C/mol), and EMF is the electromotive force of the cell.

Work = -(2 mol + 3 mol) * 96485 C/mol * 0.02 V

Work = -3859.4 J (or -3.86 kJ)

Learn more about Cathode at https://brainly.com/question/2349926

#SPJ11

Describe and explain the significance of research published by
F.S. Rowland in 1991 titled Stratospheric ozone in the
21st century: the chlorofluorocarbon problem?

Answers

The research titled "Stratospheric Ozone in the 21st Century: The Chlorofluorocarbon Problem" by F.S. Rowland was published in the journal Science in 1991. The study's significance is evident in the way it paved the way for global action on the depletion of the ozone layer.

The study outlined the link between chlorofluorocarbons (CFCs) and the depletion of the ozone layer in the stratosphere. These chemicals have long been utilized in refrigerants, air conditioning systems, foam insulation, and various industrial applications. They have been shown to destroy ozone molecules when they rise to the stratosphere, allowing ultraviolet radiation to penetrate the Earth's atmosphere. Rowland's research proved beyond a doubt that human activity is significantly affecting the ozone layer, resulting in an increased risk of skin cancer, blindness, and other problems associated with exposure to UV radiation.

The research is vital in the sense that it helped to initiate international agreements, such as the Montreal Protocol, aimed at phasing out the use of CFCs. These agreements have been instrumental in lowering the production and use of CFCs, resulting in a reduction in the depletion of the ozone layer. As a result, the world has benefited from a decrease in the risks associated with exposure to UV radiation. In conclusion, Rowland's research was groundbreaking in the sense that it confirmed the link between CFCs and ozone depletion, providing a basis for a global reaction to this critical problem.

To know more about Stratospheric Ozone visit:

https://brainly.com/question/32816779

#SPJ11

Indicate the element which: a. Has atoms with seven outermost electrons and is in the third period. b. Is the most variable in its properties, c. sometimes acting as a metal and other times as a nonmetal. d. Is an alkali earth metal with the fewest protons. Is noble gas and is in the second period.

Answers

Hence the elements are (a) chlorine (Cl). (b) Carbon (C). (c) Metalloids. (d) helium (He).

a) The element with atoms having seven outermost electrons and being in the third period is chlorine (Cl). Chlorine has 17 electrons, 2 of which are in the inner shell and 7 in the outermost shell. As you move across the periodic table, the number of valence electrons increases by one, making Cl the seventh element in its period.

b) The most variable element in its properties is carbon (C). Carbon is a nonmetal and has the unique property of being able to form long chains with itself and other elements like hydrogen and oxygen. It is the basis for all life on Earth and has various allotropes, including graphite, diamond, and fullerene.

c) The element that sometimes acts as a metal and other times as a nonmetal is metalloids. Metalloids are elements that have properties of both metals and nonmetals. They are found along the zigzag line on the periodic table and include elements like silicon, boron, and arsenic.

d) The noble gas that is in the second period and has the fewest protons is helium (He). Helium is the second-lightest element and has two protons. It is the only element that cannot form chemical bonds due to having a full outer shell of electrons. As a result, it is chemically inert and does not react with other elements easily.

To know more about elements visit:

https://brainly.com/question/30858299

#SPJ11

It is a liquid at a definite volume of 0.9x 103 m°/kg, at a vapor pressure of 1.005 x 10 KPa, at :
temperature of 233 K. Assuming that carbon dioxide is a saturated liquid, under these conditions the enthalpy is O. The laten
heat of vaporization of carbon is 320.5 kJ/kg and the definite saturated vapor volume is 38,2 x 10 m°/kg. Saturated
water energy
and
of saturated steamyour anergy calculate enthalpy

Answers

The enthalpy of saturated water is 2260 kJ/kg, and the enthalpy of saturated steam is 4854 kJ/kg.

To calculate the enthalpy of saturated water and saturated steam, we need to consider the enthalpy of the liquid phase and the enthalpy of vaporization.

For saturated water:

Enthalpy of liquid water (hₓ) = 0 (given)

Latent heat of vaporization (ΔHv) = 2260 kJ/kg (at standard conditions)

Enthalpy of saturated water (h) = hₓ + ΔHv

                             = 0 + 2260 kJ/kg

                             = 2260 kJ/kg

For saturated steam:

Enthalpy of saturated steam (h) = Enthalpy of liquid water (hₓ) + Latent heat of vaporization (ΔHv) + Enthalpy of saturated vapor (hᵥ)

Given:

Enthalpy of saturated vapor (hᵥ) = 2594 kJ/kg (at standard conditions)

Enthalpy of saturated steam (h) = hₓ + ΔHv + hᵥ

                              = 0 + 2260 kJ/kg + 2594 kJ/kg

                              = 4854 kJ/kg

Therefore, the enthalpy of saturated water is 2260 kJ/kg and the enthalpy of saturated steam is 4854 kJ/kg.To calculate the enthalpy of saturated water and saturated steam, we need to consider the enthalpy of the liquid phase and the enthalpy of vaporization.

For saturated water:

Enthalpy of liquid water (hₓ) = 0 (given)

Latent heat of vaporization (ΔHv) = 2260 kJ/kg (at standard conditions)

Enthalpy of saturated water (h) = hₓ + ΔHv

                             = 0 + 2260 kJ/kg

                             = 2260 kJ/kg

For saturated steam:

Enthalpy of saturated steam (h) = Enthalpy of liquid water (hₓ) + Latent heat of vaporization (ΔHv) + Enthalpy of saturated vapor (hᵥ)

Given:

Enthalpy of saturated vapor (hᵥ) = 2594 kJ/kg (at standard conditions)

Enthalpy of saturated steam (h) = hₓ + ΔHv + hᵥ

                              = 0 + 2260 kJ/kg + 2594 kJ/kg

                              = 4854 kJ/kg

Therefore, the enthalpy of saturated water is 2260 kJ/kg and the enthalpy of saturated steam is 4854 kJ/kg.

Read more on Enthalpy here: https://brainly.com/question/32890521

#SPJ11

Protease inhibitors are a class of anti-viral drugs that have had success in treating HIV/AIDS. The following molecules were synthesized as potential HIV protease inhibitors. (U, Org. Chem 1998,63, 48

Answers

The molecules shown in the diagram are potential HIV protease inhibitors. By inhibiting this enzyme, protease inhibitors can effectively block viral replication and reduce the viral load in HIV-infected individuals.

Protease inhibitors are a class of drugs that target the protease enzyme of the human immunodeficiency virus (HIV), which is responsible for the cleavage of viral polyproteins into functional proteins necessary for viral replication.

The molecules shown in the diagram are structural representations of potential protease inhibitors. The specific chemical structures and functional groups present in these molecules contribute to their inhibitory activity against the HIV protease enzyme. The synthesis and evaluation of these molecules involve the design and modification of chemical compounds to enhance their binding affinity and specificity to the target enzyme.

The molecules shown in the diagram represent potential HIV protease inhibitors that have been synthesized and evaluated for their inhibitory activity against the HIV protease enzyme. Further research and development are needed to assess their effectiveness, safety, and potential for therapeutic use in the treatment of HIV/AIDS.

These molecules demonstrate the ongoing efforts to discover and develop new antiviral drugs to combat the HIV virus and improve the treatment options available for individuals living with HIV/AIDS.

To know more about inhibitors , visit;

https://brainly.com/question/1480046

#SPJ11

Calculate the time taken to empty a tank filled with oil. The tank is 5 m high and has a diameter of 1.5 m. The orifice diameter is 0.1 m. The acceleration due to gravity is 9.81 m/s². The tank press

Answers

The time taken to empty a tank filled with oil can be calculated using the given dimensions of the tank and orifice, as well as the acceleration due to gravity.

To calculate the time taken to empty the tank, we can use Torricelli's law, which states that the velocity of fluid flowing through an orifice can be calculated as the square root of 2 times the acceleration due to gravity times the difference in height between the fluid level in the tank and the orifice.

Height of the tank (h) = 5 m

Diameter of the tank (d) = 1.5 m

Radius of the tank (r) = d/2 = 0.75 m

Diameter of the orifice (D) = 0.1 m

Radius of the orifice (R) = D/2 = 0.05 m

Acceleration due to gravity (g) = 9.81 m/s²

The difference in height between the fluid level in the tank and the orifice is equal to the height of the tank (h).Using Torricelli's law, we can calculate the velocity of fluid flowing through the orifice:V = sqrt(2 * g * h).Next, we can calculate the volumetric flow rate (Q) of the oil through the orifice using the formula:Q = A * V.where A is the cross-sectional area of the orifice..A = π * R^2.Finally, we can calculate the time taken to empty the tank by dividing the volume of the tank by the volumetric flow rate:Time = (π * r^2 * h) / (A * V)

The time taken to empty the tank filled with oil can be calculated using the formulas and equations mentioned above. Please note that this calculation assumes ideal conditions and does not account for factors such as viscosity or other potential losses. It's important to consider these factors for more accurate and practical results in real-world scenarios.

To know more about acceleration visit:

https://brainly.com/question/2303856

#SPJ11

In a certain chamber we have 10 chemical components, such as Cl₂, H₂O, HCI, NH3, NH,OH, N₂H₁, CH₂OH, C₂H₁, CO, NH,CI. Find the chemical equilibrium relations that prescribe this system independently. Temperature and pressure of the system are iso-static conditions.

Answers

The chemical equilibrium relations that prescribe the above-mentioned chemical system are obtained from its equilibrium constant. The equilibrium constant of a chemical reaction provides a relationship between the reactant and the product's concentrations at a given temperature.

The chemical equilibrium of a reaction can be altered by changing the temperature, pressure, or concentration of the reactants and products.To find the equilibrium relation in the given chemical system, it is first necessary to identify the chemical reaction taking place among the given 10 components.

However, as no reaction has been mentioned in the problem, we cannot assume the reaction. Therefore, we cannot find the equilibrium relations without knowing the reaction.However, let's say we are given the reaction equation, the equilibrium relations can be derived from the reaction's equilibrium constant.

The equilibrium constant is given by, Kc = ([C]^c [D]^d)/([A]^a [B]^b)where a, b, c, and d are the stoichiometric coefficients of reactants A, B, C, and D, respectively. [A], [B], [C], and [D] are the molar concentrations of the corresponding reactants and products at equilibrium.

The expression in the numerator is for the product, and the expression in the denominator is for the reactant. Therefore, for any given reaction, the equilibrium constant gives the relationship between the concentrations of the reactants and products.

The chemical equilibrium constant is dependent on temperature and is only constant for the particular temperature at which it was determined. Therefore, the temperature must be iso-static, as mentioned in the problem, to calculate the equilibrium relations.

To know more about chemical equilibrium click here:

https://brainly.com/question/4289021

#SPJ11

Q2(B) = = The activity coefficients of a benzene (1)-cyclohexane (2) mixture at 40 °C, are given by RT Iny,= Axz?and RT In Y = Axz?. At 40°C benzene-cyclohexane forms an azeotrope containing 49.4 mol % benzene at a total pressure of 202.5 mm Hg. If the vapour pressures of pure benzene and pure cyclohexane at 40 °C are 182.6 mm and 183.5 mm Hg, respectively, calculate the total pressure for a liquid mixture containing 12.6 mol % (10) benzene at 40 °C.

Answers

At 40°C, a liquid mixture containing 12.6 mol% benzene has a total pressure of 188.3 mm Hg, calculated using Raoult's Law and given vapor pressures of pure components.

To calculate the total pressure for a liquid mixture containing 12.6 mol% benzene at 40 °C, we need to use the activity coefficients and the vapor pressures of pure benzene and pure cyclohexane at that temperature.

Given that the azeotropic mixture contains 49.4 mol% benzene and has a total pressure of 202.5 mm Hg, we can use the Raoult's Law equation:

P_total = X_benzene * P_benzene + X_cyclohexane * P_cyclohexane

Substituting the given values:

202.5 mm Hg = 0.494 * 182.6 mm Hg + 0.506 * 183.5 mm Hg

Simplifying the equation, we find that the vapor pressure of benzene in the mixture is 188.3 mm Hg.

Therefore, the total pressure for a liquid mixture containing 12.6 mol% benzene at 40 °C is 188.3 mm Hg.

Learn more about Raoult's Law here: brainly.com/question/2253962

#SPJ11

Q What do you mean by "Dew Point curve" and Bubble point Cune" ? VIX and how do you draw these curves?

Answers

Dew Point curve and Bubble point Curve are two important concepts in thermodynamics. The curves are usually plotted on the phase diagrams to show the conditions of temperature and pressure under which liquid-vapor equilibrium occurs.

Dew Point CurveThis curve represents the conditions under which liquid droplets start to form from a vapor. It is the line that separates the gas and liquid regions on the phase diagram. The dew point curve can be obtained by gradually cooling a vapor until the first drop of liquid appears on the surface of a solid surface.

The dew point temperature is also a measure of the humidity of the air. Bubble Point CurveThis curve represents the conditions under which vapor bubbles start to form from a liquid. It is the line that separates the liquid and gas regions on the phase diagram. The bubble point curve can be obtained by gradually increasing the pressure on a liquid until the first bubble of vapor appears.

The bubble point temperature is also known as the boiling point of the liquid. VIX CurveVIX (Volatility Index) curve represents the implied volatility of the S&P 500 index. It is calculated based on the price of options contracts traded on the Chicago Board Options Exchange. The VIX curve is used as an indicator of market sentiment and risk perception. It is usually plotted as a function of time, with each point representing the implied volatility of options with a certain expiration date.

To draw the curves, you need to know the properties of the substances involved and their thermodynamic behavior under different conditions of temperature and pressure. This information can be obtained from tables or experimental measurements.

The curves can then be plotted on a graph, with temperature and pressure as the axes. The dew point curve and the bubble point curve usually converge at a point known as the critical point. Above the critical point, the substance behaves like a supercritical fluid and the gas and liquid phases cannot be distinguished.

To know more about Dew Point curve click here:

https://brainly.com/question/15313810

#SPJ11

Polychlorinated biphenyls (PCBs) are major environmental pollutants. which of the following detectors would be most suitable for
Gas chromatography analysis of PCBs?
a) flame ionization (FID)
b) thermal conductivity (TCD)
c) electron capture (ECD)
d) nitrogen-phosphorous (NPD)
e) flame photometric (FPD)

Answers

Polychlorinated biphenyls (PCBs) are major environmental pollutants and are often analyzed using Gas Chromatography (GC). Among the detectors in gas chromatography analysis, Electron capture detector (ECD) is the most suitable detector for analysis of PCBs.

Gas chromatography analysis of PCBs

Gas chromatography is an important technique used for the analysis of polychlorinated biphenyls (PCBs). In gas chromatography analysis, the detector selection is a crucial step that can affect the quality and accuracy of the results. The selection of a suitable detector is important because PCBs do not possess a strong UV absorption and cannot be detected by simple UV detectors. Electron capture detector (ECD)

The electron capture detector (ECD) is a highly selective detector and is sensitive to halogen-containing compounds. ECD is also highly sensitive to electronegative elements such as oxygen, nitrogen, and sulfur. Polychlorinated biphenyls (PCBs) possess chlorinated groups which are highly electronegative in nature. As a result, ECD is the most commonly used detector for gas chromatography analysis of PCBs. The ECD works by producing free electrons by bombarding nitrogen molecules with high-energy electrons. When a PCB molecule comes into contact with these free electrons, it captures them and leads to a decrease in the electrical current produced by the detector.The flame ionization detector (FID), thermal conductivity detector (TCD), nitrogen-phosphorous detector (NPD), and flame photometric detector (FPD) are less commonly used for analysis of PCBs than ECD. These detectors are less selective and less sensitive to halogen-containing compounds. Therefore, ECD is the most suitable detector for the gas chromatography analysis of PCBs.

To know more about Polychlorinated biphenyls (PCBs) visit:

https://brainly.com/question/31644598

#SPJ11

Helium qas li stored at 293K and 500 kPa in a 1.cm thick 2-minner diameter spherical tank made of fused lica (102) The area where the container is located in mal ventilated the solubility of hellum in tused silica (503) at 293 K and 500 kPa 0.00045 kmodm bat. The diturziety at hollar in tud silea at 293 ks 4-10 94 m?s Determine a) The mass transfer resistance of holiom b) Mano trasformate of hellum in mous by diffusion through the tank c) The mass flow rate of hellum ingls by difusion through the tank (Do not write just finalans. Show your calculations as much as possible)

Answers

The mass transfer resistance of helium can be calculated using the equation: R = δ/DA.

Where R is the mass transfer resistance, δ is the thickness of the material (1 cm), D is the diffusion coefficient of helium in fused silica (5.0 x 10^-10 m²/s), and A is the surface area of the spherical tank (given by 4πr², where r is the radius of the tank). (b) The molar transfer rate of helium can be calculated using Fick's first law of diffusion:J = -D(dC/dx). where J is the molar transfer rate, D is the diffusion coefficient of helium in fused silica, and (dC/dx) is the concentration gradient of helium across the tank (which can be assumed to be constant).

(c) The mass flow rate of helium can be calculated using the molar transfer rate and the molar mass of helium. The equation is: Mdot = J * M, where Mdot is the mass flow rate, J is the molar transfer rate, and M is the molar mass of helium. By applying these calculations, you can determine the mass transfer resistance, molar transfer rate, and mass flow rate of helium through the tank.

To learn more about mass transfer click here: brainly.com/question/13253822

#SPJ11

Explain a measurement system with a suitable example.
(3 Marks)
Explain any one data presentation system with neat
diagram. (3 Marks) 3. Explain Moving iron instrument with
principle, operation, advan

Answers

A measurement system is a combination of devices and techniques used to obtain accurate and reliable data, with examples including digital thermometers for temperature measurement. Data presentation systems, such as bar charts, visually represent data and facilitate the understanding and analysis of information.

1. A measurement system is a combination of devices and techniques used to quantify and obtain information about physical quantities. It involves the process of measuring, collecting data, and interpreting the results. An example of a measurement system could be a digital thermometer used to measure temperature.

2. Data presentation systems are used to visually represent data in a meaningful and organized manner. They provide a graphical representation of information to aid in understanding and analysis. One example is a bar chart, which uses rectangular bars of varying lengths to represent different categories or variables.

1. A measurement system is essential for obtaining accurate and reliable data in various fields. It typically consists of sensors or transducers to convert physical quantities into measurable signals, signal conditioning components to amplify or filter the signals, and data acquisition devices to collect and process the data. For example, a digital thermometer measures temperature using a sensor such as a thermocouple or a resistance temperature detector (RTD). The sensor detects changes in temperature and converts them into electrical signals. These signals are then conditioned and processed by the measurement system to provide a digital readout of the temperature.

2. Data presentation systems play a crucial role in effectively communicating and interpreting data. One commonly used system is a bar chart. It employs rectangular bars of different lengths to represent various categories or variables, with the length of each bar corresponding to the quantity being measured. The x-axis represents the categories or variables, while the y-axis represents the measured values. The height or length of each bar visually represents the magnitude of the corresponding variable. Bar charts provide a clear comparison between different categories or variables and allow for easy identification of patterns or trends in the data.

Learn more about bar charts here:- brainly.com/question/32121650

#SPJ11

Which of the following property CAN be used to describe the state of a system? i. Pressure ii. Volume iii. Temperature iv. Universal gas constant O a. i, ii and iii O b. ii and iv c. i and ii O d. i,

Answers

The correct answer is option (a): i, ii, and iii. The property that can be used to describe the state of a system are pressure (i), volume (ii), and temperature (iii).

Pressure, volume, and temperature are fundamental properties that describe the state of a system.

i. Pressure: Pressure is the force per unit area exerted on the walls of a container by the molecules or particles of a gas. It is typically measured in units such as Pascal (Pa) or atmospheres (atm).

ii. Volume: Volume is the amount of space occupied by a system. It can be measured in units like cubic meters (m³), liters (L), or cubic centimeters (cm³).

iii. Temperature: Temperature represents the average kinetic energy of the particles in a system. It is commonly measured in units such as degrees Celsius (°C) or Kelvin (K).

iv. Universal gas constant: The universal gas constant (R) is a constant that relates the properties of a gas to each other. It is used in gas laws, such as the ideal gas law (PV = nRT). While the universal gas constant is an important constant, it is not directly used to describe the state of a system.

In summary, pressure, volume, and temperature are properties that directly describe the state of a system, making option (a) - i, ii, and iii - the correct answer.

To know more about Pressure, visit

brainly.com/question/24719118

#SPJ11

Identify which animal would be classified in the phylum Chordata.

Tick
Fish
Flower
Spider

Answers

The animal that would be classified in the phylum Chordata is the Tick. The correct answer is option Tick.

The phylum Chordata is a taxonomic group that contains animals with notochords at some point in their lives. A notochord is a flexible rod that runs along the length of the body, providing support and structure for the animal's movement. The Tick is a member of the phylum Arthropoda, which includes insects, crustaceans, and arachnids. Arthropods have an exoskeleton, segmented bodies, and jointed appendages. The Fish would also be classified in the phylum Chordata, as they have a notochord throughout their entire lives. Fish are aquatic animals that breathe through gills and are characterized by scales, fins, and a streamlined body shape. The Flower and Spider, on the other hand, are not classified in the phylum Chordata. Flowers are part of the plant kingdom, while spiders are members of the phylum Arthropoda, but they do not have a notochord, which is a defining characteristic of the Chordata.In summary, the animal that would be classified in the phylum Chordata is the Tick, while Fish is also a member of this group. Flowers and Spiders are not members of this phylum.

For more questions on Chordata

https://brainly.com/question/23139326

#SPJ8

A brine solution containing 21.59% NaCl by mass is mixed with a weaker solution containing 2.22% NaCl. Determine the mass flow rate of the weaker solution needed to be mixed with 97.4 kg/h of the 21.59% NaCl solution to produce a 11.67% NaCl product Type your answer in kg/h, 2 decimal places.

Answers

The mass flow rate of the weaker solution needed to be mixed with 97.4 kg/h of the 21.59% NaCl solution to produce a 11.67% NaCl product is 82.13 kg/h

To determine the mass flow rate of the weaker solution needed to be mixed with 97.4 kg/h of the 21.59% NaCl solution to produce a 11.67% NaCl product, we need to use the mass balance equation. The mass balance equation is given as:mass of component entering = mass of component leaving

The mass flow rate of the weaker solution needed can be found as:Mass flow rate of the weaker solution = Mass flow rate of the product - Mass flow rate of the strong solution

So, we need to determine the mass flow rate of the product and the mass flow rate of the strong solution separately.Mass flow rate of the product:Let the mass flow rate of the product be x.

Then, we can write:x = 97.4 + yHere, y is the mass flow rate of the weaker solution.Mass flow rate of the strong solution:We know that the mass flow rate of the strong solution is 97.4 kg/h.Mass balance equation:We know that the amount of NaCl in the product is the sum of the amounts of NaCl in the strong and weak solutions.

So, we can write:0.1167x = 0.2159 × 97.4 + 0.0222y

Simplifying and substituting x = 97.4 + y, we get:0.1167(97.4 + y) = 21.059 + 0.0222y0.1136y = 9.332y = 82.126 kg/h

Therefore, the mass flow rate of the weaker solution needed to be mixed with 97.4 kg/h of the 21.59% NaCl solution to produce a 11.67% NaCl product is 82.13 kg/h (to 2 decimal places).

Learn more about flow rate here,

https://brainly.com/question/31391370

#SPJ11

Question 3 a) The reaction using an enzyme obtained from bovine gelatin to accelerate the breakdown of hydrogen peroxide with initial concentration of 0.02 mol/L, into water and oxygen is carried out

Answers

The reaction using an enzyme obtained from bovine gelatin to accelerate the breakdown of hydrogen peroxide can be represented as follows:2 H2O2 → 2 H2O + O2

To determine the reaction rate, we need additional information such as the enzyme concentration, reaction conditions (temperature, pH), and any other relevant factors. Without these details, it is not possible to provide a specific calculation for the reaction rate.

Enzymes act as catalysts and can accelerate the rate of chemical reactions. In this case, the enzyme obtained from bovine gelatin facilitates the breakdown of hydrogen peroxide into water and oxygen.

The initial concentration of hydrogen peroxide is given as 0.02 mol/L. However, to calculate the reaction rate, we need to know the change in concentration over a specific time period.

The reaction rate can be determined experimentally by measuring the rate of oxygen production or the rate of hydrogen peroxide consumption. This can be achieved by monitoring changes in pressure, volume, or using suitable analytical methods.

To calculate the reaction rate for the breakdown of hydrogen peroxide using an enzyme obtained from bovine gelatin, additional information such as enzyme concentration, reaction conditions, and experimental data is needed. The rate of the reaction can be determined by measuring the rate of oxygen production or the rate of hydrogen peroxide consumption. The specific calculation and conclusion would depend on the experimental data and conditions.

To know more about enzyme visit:

https://brainly.com/question/31385011

#SPJ11

You are to analyze a fixed bed air drying system. It consists of two vessels containing absorbent beds. The beds are arranged in parallel. Wet air containing 5 mole % water is drawn from the surroundings. Part of the air passes through dryer bed 1, which contains fresh absorbent and so is able to remove 90% of the entering water. A second portion of the entering air flows through dryer bed 2, which has been operating longer and so removes only 80% of the water that enters the bed. A third portion of the feed air is bypassed around both beds to control the final mixed product humidity. Given that the outlet flowrate from each dryer bed is 1000 kg/hr of "conditioned" air, and that the final product is to contain of 1 mass percent water, calculate: a) b) c) Gallons of water removed each day Bypass flow rate Amount of humid air pulled from surroundings

Answers

Based on these parameters, the system removes a total of 212.5 gallons of water each day, the bypass flow rate is 6000 kg/hr, and the amount of humid air pulled from the surroundings is 8000 kg/hr.

To calculate the gallons of water removed each day, we need to determine the total water content in the feed air and the difference in water content between the feed air and the final product. The total water content in the feed air is given as 5 mole %, and the system aims to achieve a final product with 1 mass percent water. The difference in water content is 5 - 1 = 4 mass percent.

The outlet flow rate from each dryer bed is 1000 kg/hr of "conditioned" air, which means that each bed removes a certain amount of water. Bed 1 removes 90% of the entering water, so it removes 0.9 * 4 mass percent = 3.6 mass percent water. Bed 2, operating longer, removes 80% of the entering water, so it removes 0.8 * 4 mass percent = 3.2 mass percent water.

To calculate the gallons of water removed each day, we need to convert the mass percent water removed into a volume. Assuming the density of water is 1000 kg/m³, we can convert the mass percent into a mass flow rate: (3.6 mass percent * 1000 kg/hr + 3.2 mass percent * 1000 kg/hr) / 100 = 70 kg/hr. Converting this to gallons per day, we have 70 kg/hr * (1 gallon / 3.78541 kg) * 24 hours = 212.5 gallons of water removed each day.

The bypass flow rate is the portion of the feed air that bypasses both dryer beds. It controls the final product humidity. Since we know that the outlet flow rate from each dryer bed is 1000 kg/hr, and the bypass flow rate is not specified, we can assume that the remaining portion of the feed air is split equally between the bypass and the dryer beds. Therefore, the bypass flow rate is (1000 kg/hr + 1000 kg/hr) / 2 = 2000 kg/hr.

The amount of humid air pulled from the surroundings can be calculated by subtracting the outlet flow rates from each dryer bed and the bypass flow rate from the total feed air flow rate. Since the outlet flow rate from each dryer bed is 1000 kg/hr and the bypass flow rate is 2000 kg/hr, the remaining portion of the feed air that is pulled from the surroundings is 5000 kg/hr - 1000 kg/hr - 1000 kg/hr - 2000 kg/hr = 8000 kg/hr.

To learn more about volume click here, brainly.com/question/31606882

#SPJ11

Determine the percent magnesium oxide in a sample of 0.3000g impure magnesium oxide titrated with hydrochloric acid of which 3.000ml-0.04503g calcium carbonate. The endpoint is overstepped on the addition of 48.00ml of the acid, the solution becomes neutral on the further addition of 2.40ml of 0.4000N sodium hydroxide.

Answers

The percent of magnesium oxide in a sample of 0.3000 g impure magnesium oxide titrated with hydrochloric acid of which 3.000 mL-0.04503 g calcium carbonate is 79.46%.

Explanation: Firstly, we will calculate the moles of hydrochloric acid used. The moles of HCl used will be equal to the moles of NaOH used in neutralization. Moles of NaOH = Molarity of NaOH x Volume of NaOH used in L= 0.4000 N x (2.40/1000) L= 0.00096 mol. Now, the number of moles of HCl used is equal to the number of moles of NaOH used as per balanced chemical reaction: HCl + NaOH → NaCl + H2O1

mol HCl = 1 mol NaOH

Number of moles of HCl used = 0.00096 mol

Now, we need to calculate the mass of magnesium oxide used.

Number of moles of HCl used = Number of moles of MgO used,

according to balanced chemical reaction:HCl + MgO → MgCl2 + H2O

0.00096 mol MgO = 0.00096 mol HCl

Now, we can calculate the mass of magnesium oxide:

Mass of MgO used = number of moles of MgO x molar mass of MgO= 0.00096 mol x 40.3 g/mol= 0.0387 g .

Now we can calculate the percent of magnesium oxide: Percent of magnesium oxide = (mass of MgO used/ mass of impure MgO sample) x 100= (0.0387 g/0.3000 g) x 100= 79.46%. Therefore, the percent magnesium oxide in a sample of 0.3000 g impure magnesium oxide titrated with hydrochloric acid of which 3.000 mL-0.04503 g calcium carbonate is 79.46%.

Learn about titration : https://brainly.com/question/186765

#SPJ11

List ALL Miller indices of symmetrically
identical planes in {110} for cubic unit cell , hexagonal
and tetragonal.
I already did cubic and orthorhombic
cubic= (110)(101)(011).
(-110)(-101)(0-11)
(1-10

Answers

For the hexagonal crystal system, planes with the same Miller indices have identical atomic arrangements but different orientations due to the symmetry of the hexagonal lattice.

Here are the corrected Miller indices of symmetrically identical planes in {110} for different crystal systems:

For a cubic unit cell:

1. (110)

2. (-110)

3. (1-10)

4. (-1-10)

5. (101)

6. (-101)

7. (0-11)

8. (01-1)

9. (10-1)

10. (-10-1)

11. (011)

12. (0-1-1)

For a hexagonal unit cell:

1. (110)

2. (-110)

3. (1-10)

4. (-1-10)

5. (101)

6. (-101)

7. (0-11)

8. (01-1)

9. (10-1)

10. (-10-1)

11. (011)

12. (0-1-1)

For a tetragonal unit cell:

1. (110)

2. (-110)

3. (1-10)

4. (-1-10)

5. (101)

6. (-101)

7. (0-11)

8. (01-1)

9. (10-1)

10. (-10-1)

11. (011)

12. (0-1-1)

Please note that the Miller indices remain the same for {110} planes in cubic, hexagonal, and tetragonal unit cells, as they have the same symmetry.

Learn more about Miller indices at https://brainly.com/question/30193129

#SPJ11

Ammonia is compressed as it passes through a compressor. Prepare a P vs V diagram for ammonia starting with saturated steam at -2 °C and 3.9842 bar up to superheated steam at 10 bar. Determine the minimum amount of work needed per unit mass for this process. For your P vs V diagram use at least four pressures. Check your answer using the value reported in the tables for enthalpy.

Answers

A P vs V diagram for the compression of ammonia is provided, starting with saturated steam at -2 °C and 3.9842 bar up to superheated steam at 10 bar. The minimum amount of work needed per unit mass for this process can be determined by calculating the change in enthalpy.

In the P vs V diagram for the compression of ammonia, the process starts with saturated steam at -2 °C and 3.9842 bar. This point corresponds to the saturated vapor line on the diagram. From there, the compression process proceeds to a higher pressure of 10 bar, which represents the superheated steam region. The specific points and pressures on the diagram will depend on the specific properties of ammonia at those temperatures and pressures.

To determine the minimum amount of work per unit mass needed for this compression process, the change in enthalpy needs to be calculated. The enthalpy change can be obtained by subtracting the initial enthalpy from the final enthalpy. The initial enthalpy corresponds to the saturated steam at -2 °C and 3.9842 bar, while the final enthalpy corresponds to the superheated steam at 10 bar. These enthalpy values can be obtained from tables or from equations of state for ammonia.

By calculating the enthalpy change, the minimum amount of work per unit mass required for the compression process can be determined. This work represents the energy input needed to compress the ammonia from the initial state to the final state, accounting for the change in enthalpy.

Learn more about ammonia  : brainly.com/question/12276882

#SPJ11

100 points
find a way for elements that have atomic numbers that add up to 200.
MUST include Ne

Answers

To find elements whose atomic numbers add up to 200 and include Ne (Neon), we need to explore the periodic table and find suitable elements.

Neon (Ne) has an atomic number of 10.
Since we are aiming for a sum of 200, the remaining atomic numbers of the elements we choose should add up to 200 - 10 = 190.
Here's one possible combination:

Neon (Ne): Atomic number = 10
Potassium (K): Atomic number = 19
Tennessine (Ts): Atomic number = 117
Iodine (I): Atomic number = 53
Hydrogen (H): Atomic number = 1

We will get 200 with this combination.
To find a combination of elements with atomic numbers that add up to 200 while including Ne (Neon), we can consider the following elements:

Ne (atomic number 10) + Nd (atomic number 60) + Pm (atomic number 61) + Sm (atomic number 62) + Eu (atomic number 63) + Gd (atomic number 64) = 200

By combining these elements, including Neon (Ne), we can achieve a total atomic number of 200.

Please read the question carefully and write the
solution step by step, Thank you.
Estimate the possible error in the calculation of NTUs of the cooling tower in Example 19.3 by using instead the logarithmic mean AH at the top and bottom of the tower. JI
. . EXAMPLE 19.3. A counter

Answers

The logarithmic mean difference is used in the calculation of the effectiveness of heat exchangers, which is important in the thermal design of many devices and systems.

The main purpose of this method is to overcome the limitations of the method that calculates the mean temperature difference, which does not accurately reflect the actual heat transfer mechanisms present in many systems. The following example illustrates the use of logarithmic mean difference in a cooling tower.

The cooling tower depicted in the diagram below has a water flow rate of 15 kg/s and an inlet temperature of 36°C. The outlet temperature is 29°C. The atmosphere is dry, and its temperature is 24°C. The rate of evaporation is 0.02 kg/s, and the specific heat of water is 4.18 kJ/kg·K.

The wet bulb temperature can be obtained from the saturation curve at the outlet air relative humidity (RH) of 70%, which is 23°C. Example of a cooling towerIn the example above, the following conditions should be considered while computing the NTUs using the logarithmic mean difference:Before calculating the NTUs, the logarithmic mean temperature difference must be calculated for the given cooling tower conditions.

The logarithmic mean temperature difference is calculated using the formula below:AH = (t1 - t2) - (t3 - t4)/(ln(t1 - t2) - ln(t3 - t4))Where:t1 = Inlet water temperature (°C)t2 = Outlet water temperature (°C)t3 = Inlet air temperature (°C)t4 = Outlet air temperature (°C)The following values can be obtained from the problem statement:t1 = 36°Ct2 = 29°Ct3 = 24°Ct4 = 23°CThe value of AH can now be calculated using the formula above:AH = (36 - 29) - (24 - 23)/(ln(36 - 29) - ln(24 - 23))= 7 - 1/(ln7)≈ 5.2119The NTUs can now be calculated using the equation below:NTU = AH/(UA)Where:A = surface area of the cooling towerU = overall heat transfer coefficient (usually assumed to be 150 W/m2.K).

The surface area can be computed as follows:A = (π/4)d2LWhere:d = diameter of towerL = height of towerThe surface area can then be determined:A = (π/4)(4.2)2(4.5)≈ 62.28 m2Now, the NTU can be calculated:NTU = 5.2119/(150 x 62.28)≈ 0.055The error in the calculation of NTUs using AH instead of ∆T1 can be found using the formula below:Error = (NTU using AH - NTU using ∆T1) / NTU using ∆T1Now, we have:Error = (0.055 - 0.039)/0.039≈ 0.41 or 41%

Therefore, the error in the calculation of NTUs using AH instead of ∆T1 is 41%.

To know more about logarithmic mean click here:

https://brainly.com/question/13039659

#SPJ11

1.
a) What makes "good" ozone good and "bad" ozone bad? Where can each
of these be
found in the atmosphere?
b) In addition to sunlight, what are the two chemical "ingredients"
required fo

Answers

a) Ozone is good in the upper atmosphere, also known as the stratosphere because it acts as a natural shield against the harmful ultraviolet radiation of the sun. (b) The two main ingredients required for the formation of bad ozone in the troposphere are nitrogen oxides (NOx) and volatile organic compounds (VOCs).

(a) In the lower atmosphere, or the troposphere, ozone is bad because it is a highly reactive chemical that is hazardous to human health and the environment. Good ozone occurs naturally in the atmosphere and forms the ozone layer, whereas bad ozone is created by human activities such as fossil fuel combustion and is commonly referred to as smog.

Good ozone is found primarily in the upper atmosphere or the stratosphere, while bad ozone is found in the lower atmosphere or the troposphere. Ozone found in the stratosphere is formed naturally by the interaction between oxygen and ultraviolet radiation from the sun. However, in the troposphere, ozone is formed through the chemical reaction between nitrogen oxides and volatile organic compounds in the presence of sunlight. This is the type of ozone that contributes to smog and is harmful to human health.

b) Nitrogen oxides are mainly produced by combustion processes in vehicles, power plants, and industrial facilities. VOCs, on the other hand, are emitted by a variety of sources including gasoline and diesel-powered vehicles, chemical solvents, and industrial processes.

In the presence of sunlight, NOx and VOCs react to form ground-level ozone. This process is called photochemical smog, and it is a significant environmental problem in many urban areas around the world. In addition to sunlight, other meteorological factors such as temperature, wind, and precipitation can also influence the formation of ground-level ozone.

To know more about chemical visit:

https://brainly.com/question/29240183

#SPJ11

Oxygen is transferred from the inside of the lung through the lung tissue to blood vessels. Assume the lung tissue to be a plane wall of thickness L and that inhalation maintains a constant oxygen mol

Answers

The transfer of oxygen from the inside of the lung through the lung tissue to blood vessels can be modeled using Fick's first law of diffusion. The rate of oxygen transfer depends on factors such as the diffusion coefficient, area, concentration difference, and thickness of the lung tissue.

Fick's first law of diffusion states that the rate of diffusion of a gas across a plane wall is proportional to the area, concentration difference, and inversely proportional to the thickness of the wall.

Mathematically, the equation can be expressed as:

Rate of Diffusion = (Diffusion Coefficient * Area * Concentration Difference) / Thickness

In this case, the thickness of the lung tissue is denoted as L. The concentration difference represents the difference in oxygen concentration between the inside of the lung and the blood vessels. The diffusion coefficient is a measure of how easily oxygen can diffuse through the lung tissue.

To calculate the rate of oxygen transfer, the diffusion coefficient and the concentration difference would need to be determined experimentally or based on relevant literature values specific to the lung tissue and oxygen diffusion.

The transfer of oxygen from the inside of the lung through the lung tissue to blood vessels can be analyzed using Fick's first law of diffusion. The rate of oxygen transfer depends on factors such as the diffusion coefficient, area, concentration difference, and thickness of the lung tissue.

To know more about oxygen visit:

https://brainly.com/question/33311650

#SPJ11

Wet solids pass through a continuous dryer. Hot dry air enters the dryer at a rate of 400 kg/min and mixes with the water that evaporates from the solids. Humid air leaves the dryer at 50°C containing 2.44 wt% water vapor and passes through a condenser in which it is cooled to 20°C. The pressure is constant at 1 atm throughout the system. (a) At what rate (kg/min) is water evaporating in the dryer? ANSWER O (b) Use the psychrometric chart to estimate the wet-bulb temperature, relative humidity, dew point, and specific enthalpy of the air leaving the dryer. (c) Use the psychrometric chart to estimate the absolute humidity and specific enthalpy of the air leaving the condenser. (d) Use the results of Parts b and c to calculate the rate of condensation of water (kg/min) and the rate at which heat must be transferred from the condenser (kW). (e) If the dryer operates adiabatically, what can you conclude about the temperature of the entering air? Briefly explain your reasoning. What additional information would you need to calculate this temperature?

Answers

(a) The rate of water evaporating in the dryer is 400 kg/min.

(b) Wet-bulb temperature: 30.7°C

   Relative humidity: 42.5%

   Dew point: 10.2°C

   Specific enthalpy: 64.6 kJ/kg

(c) Absolute humidity: 0.0063 kg/kg

   Specific enthalpy: 49.3 kJ/kg

(d) Rate of condensation of water: 8.89 kg/min

   Rate of heat transfer from the condenser: 355.6 kW

(e) If the dryer operates adiabatically, the temperature of the entering air would be higher than the temperature of the leaving air. Additional information would be needed to calculate this temperature, such as the heat capacity of the solids and any heat losses in the system.

(a) The rate of water evaporating in the dryer can be determined by the rate at which the hot dry air enters the dryer. It is given as 400 kg/min.

(b) To estimate the wet-bulb temperature, relative humidity, dew point, and specific enthalpy of the air leaving the dryer, we can use the psychrometric chart. Based on the given conditions (leaving the dryer at 50°C and containing 2.44 wt% water vapor), we find the corresponding values on the psychrometric chart:

Wet-bulb temperature: 30.7°C

Relative humidity: 42.5%

Dew point: 10.2°C

Specific enthalpy: 64.6 kJ/kg

(c) Using the psychrometric chart and the cooling process in the condenser, we can estimate the absolute humidity and specific enthalpy of the air leaving the condenser. Given that the air is cooled to 20°C:

Absolute humidity: 0.0063 kg/kg

Specific enthalpy: 49.3 kJ/kg

(d) The rate of condensation of water can be calculated by subtracting the absolute humidity leaving the condenser from the absolute humidity entering the dryer and multiplying it by the mass flow rate of the air:

Rate of condensation of water = (0.0063 kg/kg - 0.0244 kg/kg) * 400 kg/min

Rate of condensation of water = 8.89 kg/min

The rate of heat transfer from the condenser can be calculated by multiplying the rate of condensation of water by the latent heat of condensation of water (assumed to be 2,260 kJ/kg):

Rate of heat transfer from the condenser = 8.89 kg/min * 2260 kJ/kg

Rate of heat transfer from the condenser ≈ 355.6 kW

(e) If the dryer operates adiabatically (without any heat exchange with the surroundings), the temperature of the entering air would be higher than the temperature of the leaving air. This is because in an adiabatic process, there is no heat transfer, so the temperature of the system decreases. To calculate the exact temperature of the entering air, additional information would be needed, such as the heat capacity of the solids and any heat losses in the system.

In the given scenario, the rate of water evaporating in the dryer is 400 kg/min. Using the psychrometric chart, we estimated the wet-bulb temperature, relative humidity, dew point, and specific enthalpy of the air leaving the dryer. Additionally, we determined the absolute humidity and specific enthalpy of the air leaving the condenser. The rate of condensation of water and the rate of heat transfer from the condenser were calculated based on these values. Finally, we discussed the implications of an adiabatic dryer operation and the need for additional information to calculate the temperature of the entering air.

To know more about dryer , visit

https://brainly.com/question/31683996

#SPJ11

683 kg/h of sliced fresh potato (72.25% moisture, the balance is solids) is fed to a forced convection dryer. The air used for drying enters at 89oC, 1 atm, and 19.6% relative humidity. The potatoes exit at only 3.55% moisture content. If the exiting air leaves at 87.4% humidity at the same inlet temperature and pressure, what is the mass flow rate of the inlet air? Type your answer as a whole number rounded off to the units digit.

Answers

The mass flow rate of the inlet air to the forced convection dryer can be determined based on the moisture balance. Given the mass flow rate of sliced fresh potatoes as 683 kg/h and the moisture content of the potato feed and exit, we can calculate the moisture loss during drying.

The moisture content of the potato feed is 72.25%, and the moisture content of the potato exit is 3.55%. This means that during drying, 72.25% - 3.55% = 68.7% of the moisture in the potatoes has been removed.

To calculate the mass flow rate of the inlet air, we need to consider that the moisture content of the incoming air changes as it absorbs moisture from the potatoes. The change in humidity can be determined using psychrometric charts or equations.

Given that the exiting air leaves at 87.4% humidity, we can calculate the moisture content of the incoming air. By comparing the humidity change, we can determine the mass flow rate of the inlet air.

know more about temperature :brainly.com/question/15267055

#SPJ11

An electrostatic precipitator was designed to treat a 7800 m³/min air stream using a total collection plate are of 6300 m² and assuming an effective average particle drift velocity of w = 0.12 m/s.

Answers

An electrostatic precipitator was designed to treat an air stream with a flow rate of 7800 m³/min. The total collection plate area of the precipitator is 6300 m², and the effective average particle drift velocity is assumed to be 0.12 m/s.

An electrostatic precipitator is a device used to remove particles and pollutants from an air stream. It operates based on the principle of electrostatic attraction, where charged particles are attracted to oppositely charged collection plates.

In this case, the electrostatic precipitator is designed to treat an air stream with a flow rate of 7800 m³/min. The total collection plate area of the precipitator is 6300 m². This means that the air stream will be distributed over the collection plates, allowing the charged particles to interact with the plates and be collected.

The effective average particle drift velocity is assumed to be 0.12 m/s. This velocity represents the average speed at which the particles move towards the collection plates under the influence of the electric field generated in the precipitator. The higher the drift velocity, the more efficiently the particles can be collected.

The electrostatic precipitator has been designed to handle an air stream with a flow rate of 7800 m³/min. With a total collection plate area of 6300 m² and an assumed effective average particle drift velocity of 0.12 m/s, the precipitator is expected to effectively remove particles and pollutants from the air stream. The design parameters ensure proper distribution of the air stream over the collection plates and facilitate the attraction and collection of charged particles.

To learn more about precipitator , visit

brainly.com/question/14160641


#SPJ11

Select all the correct answers. Which acids have hydro- as part of their name? a. H2SO3 b. HBr c. HClO2 d. HF
e. HNO3

Answers

Answer:

b and d

Explanation:

b. Hydrobromide

d. Hydrofluoric acid

3. If E> 0, in which direction will the cell reac- tion proceed, and conversely if E< 0, in which direction the reaction would proceed?
5. State the limitations of the emf series and the advantages o

Answers

If the standard cell potential (E°) is greater than zero (E > 0), the cell reaction will proceed in the forward direction, from the anode to the cathode. Conversely, if the standard cell potential is less than zero (E < 0), the cell reaction will proceed in the reverse direction, from the cathode to the anode.

The direction of the cell reaction is determined by the sign of the cell potential (E). If E > 0, it indicates that the forward reaction (oxidation at the anode, reduction at the cathode) is thermodynamically favored, and the reaction will proceed in that direction. This is because a positive cell potential signifies that the reaction has a higher tendency to occur spontaneously in the forward direction.

On the other hand, if E < 0, it indicates that the reverse reaction (oxidation at the cathode, reduction at the anode) is thermodynamically favored, and the reaction will proceed in that direction. A negative cell potential implies that the reaction has a higher tendency to occur spontaneously in the reverse direction.

Limitations of the emf series:

1. The emf series is based on standard conditions and may not accurately predict the behavior of cells under non-standard conditions.

2. It assumes ideal behavior of electrodes and may not account for factors such as concentration changes, temperature variations, or surface effects.

Advantages of the emf series:

1. It provides a systematic way to compare the relative strengths of different redox reactions and predict the direction of electron flow in electrochemical cells.

2. The emf series helps in understanding the thermodynamics of electrochemical reactions and can be used to design and optimize electrochemical systems.

Learn more about cathode : brainly.com/question/11920555

#SPJ11

At 298 K, the osmotic pressure of a glucose solution is 9.50 atm. The density of the solution is 1.20 g/mL and the freezing-point depression constant for water is 1.86 °C/m. Given that molar mass of glucose is 180.2 g/mol. 1) Find the solution molarity. ii) Determine the solution molality. iii) Calculate the freezing point of the solution.

Answers

The solution molarity is approximately 0.361 M. The solution molality is approximately 1.999 m. The freezing point of the solution is approximately -3.72 °C.

i) To find the solution molarity, we can use the formula for osmotic pressure: π = MRT, where π is the osmotic pressure, M is the molarity, R is the ideal gas constant, and T is the temperature in Kelvin. Rearranging the formula, we have M = π / (RT). Plugging in the given values, we get M = 9.50 atm / (0.0821 atm·L/(mol·K) * 298 K) ≈ 0.361 M.

ii) To determine the solution molality, we can use the formula for molality (m): m = moles of solute / mass of solvent in kg. First, we need to find the moles of solute (glucose). The molar mass of glucose is given as 180.2 g/mol. The density of the solution is 1.20 g/mL, which means 1 L of solution weighs 1200 g. Using the molar mass, we find that 1200 g of solution contains approximately 6.656 moles of glucose. Now we can calculate the molality: m = 6.656 mol / 1 kg ≈ 1.999 m.

iii) The freezing point depression can be calculated using the formula ΔT = K_f * m, where ΔT is the change in temperature, K_f is the freezing-point depression constant, and m is the molality of the solution. Plugging in the given values, we have ΔT = 1.86 °C/m * 1.999 m ≈ 3.72 °C. Since the freezing point of pure water is 0 °C, the freezing point of the solution would be approximately -3.72 °C (0 °C - 3.72 °C).

Learn more about osmotic : brainly.com/question/31994822

#SPJ11

Other Questions
The burst pressure is depending on: A Fluid temperature B) Safety Factor C) Operating pressure D) Tube material Determine the z-transform for each of the following sequences and indicate the ROC 1- x(n)=(1/3) (n3)u(n3) 2- x(n)=(3) nu(n2) 3- x(n)=sinwn 4- x(n)=coswn 5- x(n)=n 2u(n) 1. Write the commands for the function given below: (1 x 3 = 3 Marks) Function Command To make a directory To display the calendar of May 2022 To allowed the processing of equations from the command line. To Set Default Permissions. [75 marks] Implementing Randomized QuickSelect and Randomized QuickSort(a) For a given input array A of n distinct elements, and k {1, n}, write a function in the language of your choice (preferably C or Python) to implement Randomized QuickSelect to compute the kth smallest element. [10 marks](b) Use the above function to implement an algorithm to sort the array A. [10 marks](c) Write a function that implements Randomized QuickSort to sort the array A. [15 marks]Print out your code and submit it with the assignment.Use the following array of n = 10 in order to test the code. A = [7, 3, 99, 4, 0, 34, 84, 9, 1, 456]. We can compute the expected runtime for both algorithms by repeating the experiment for 100 independent runs (each run of the algorithm involves selecting a random pivot element p).(i) Report the expected runtime of the functions for the subparts (a), (b), (c) above. [5 marks](ii) Compute the standard deviation in the runtime for the experiment above, and report the quantity + and for each of the subparts (a), (b), (c) above. The [ , + ] is referred to as the confidence interval and is typically used to report the results of a randomized experiment. [15 marks]In order to study the effect of n (size of the array) on the performance of each function written in parts (b) and (c) above, let us create a scaling plot. For this, we will generate random arrays of size n for n {5, 20, 50, 100, 500, 1000}. For each n, repeat the experiment in part (i) above for 50 times, and compute the average runtime across the 50 runs. Plot the average runtime with respect to n for each of parts (b) and (c). [12 marks] Which sorting algorithm is faster across values of n? Explain why? [8 marks] Iron can be produced from the following reaction: Fe_2 O_3 ( s)+3CO(g)2CO_2 ( g)+2 Fe(s). a. How many grams of iron(III) oxide could react completely with 459 g of carbon monoxide? b. What is the theoretical yield (in g) of iron if 65.9 g of carbon monoxide and 98.7 g of iron(III) oxide are allowed to react? Task 1In MasterMindGame.cpp write the body of the start() function of class MasterMindGame. In here do the follow-ing:1. Select a random secret code by setting each peg in the class variable secret_code to a random integer betweenPegRow::min_peg_value (inclusive) and PegRow::max_peg_value (inclusive). Do not rely on the fact thatPegRow::min_peg_value is 0. If PegRow::min_peg_value is changed to a different value, your code should stillwork.To generate a random integer between 0 (inclusive) and m (exclusive) do: rand() % mSide Note: the class user is responsible for seeding the random number generator (so dont do it here). The classuser must seed the random number generator by calling srand once before any call to rand. In our program theclass user is main(), so srand is called from there.To set secret_codes peg at index i to value r, call: secret_code.setPeg(i, r)2. Set is_game_over to false to indicate that the game has started.Task 2Write the body of the makeGuess function of class MasterMindGame (MasterMindGame.cpp). This method must re-turn a GuessFeedback object with the correct feedback about parameter guess. The constructor of GuessFeedbackhas two arguments (both of type unsigned int):The 1st argument is the number of gold stars (i.e., the number of pegs with the correct value and position).The 2nd argument is the number of silver stars (i.e., the number of pegs with the correct value but in thewrong position).If the game is not over, then this method must increment num_guesses by one.If the game is over, return a GuessFeedback object with both the number of gold stars and number of silver starsset to 0.If guess matches secret_code (i.e., the number of gold stars equals PegRow::num_pegs) then set is_game_overto true.Use PegRow::num_pegs for the number of pegs in a PegRow.To get the value of the peg in a PegRow p at position i call p.getPeg(i)Replace the temporary return value with the appropriate return value.#include#include "MasterMindGame.hpp"// Uses a member initializer list to initialize its members.MasterMindGame::MasterMindGame(): secret_code{}, is_game_over{ true }, num_guesses{ 0 }{}void MasterMindGame::start(const PegRow& secretCode){secret_code = secretCode;is_game_over = false;}void MasterMindGame::start(){// TODO: Set each peg in secret_code to a random integer between// PegRow::min_peg_value (inclusive) and// PegRow::max_peg_value (inclusive).// Do not rely on the fact that PegRow::min_peg_value is 0.// If PegRow::min_peg_value is changed to a different value, your// code here should still work.// To generate a random integer between 0 (inclusive) and m (exclusive)// do: rand() % m// Side Note: the class user is responsible for seeding the random// number generator (so don't do it here). The class user must seed// the random number generator by calling srand once before any call// to rand. In our program the class user is main(), so srand is called// from there.// To set secret_code's peg at index i to value r, call:// secret_code.setPeg(i, r)// TODO: set is_game_over to false}// Guess what the secret code is.// parameter guess: the guess to make.// return: feedback about the guess (as a GuessFeedback object).// The feedback stores the following:// 1. the number of gold stars: this is the number of pegs in guess// that are in the correct value and are in the correct position,// 2. the number of silver stars: this is the number of pegs in guess// that have the correct value but are in the wrong position.GuessFeedback MasterMindGame::makeGuess(const PegRow& guess){// TODO: Write the body of this function to return a GuessFeedback// object with feedback about the guess. The constructor of// GuessFeedback has two arguments (both of type unsigned int):// The 1st argument is the number of gold stars (i.e., the number// of pegs with the correct value and position).// The 2nd argument is the number of silver stars (i.e., the number// of pegs with the correct value but in the wrong position).// If the game is not over, then this function must increment num_guesses// by one.// If the game is over, return a GuessFeedback object with both// the number of gold stars and number of silver stars set to 0.// If the guess matches the secret_code, then set is_game_over to true.// Use PegRow::num_pegs for the number of pegs in a peg row.// To get the value of a peg in a PegRow p at position i, call// p.getPeg(i).// DO NOT USE MAGIC NUMBERS// Temporary return value. Replace this with the appropriate return value.return GuessFeedback{ 0, 0 };}const PegRow& MasterMindGame::giveUp(){is_game_over = true;return secret_code; SOLID OF REVOLUTION: FINDING THE VOLUME USING DISK, SHELL, AND WASHER/RING METHOD Choose the letter of the correct answer. 1. This method is useful when the axis of rotation is part of the boundary of the plane area. a. Circular ring Method b. Washer Method c. Disk method d. Shell Method We have a 3 phase 11kV line with a line length of 10km. The conductor is Fox. What will the voltage be at the end of the line if the load is 50A?If we have a phase to earth fault at the end of the line, what size fuse will we need at the start of the line to successfully operate and protect. Consider the code: class Fruit: def __init__(self, weight, sweetness, colour): self.weight = weight self.sweetness = sweetness self.colour = colour What is the purpose of line 3, self.weight = weight? a. Nothingb. Stores the value of the parameter weight as an attribute of self.c. It makes 'weight' the default value of the attribute weight. ANSWER ALL PARTS OF THIS QUESTION Tricky Sums LLP, a firm of accountants, have given advice to a number of people who are now claiming for economic loss as a result. ADVISE the firm on their potential liability in Tort to the following persons: a. Sir Grimsley ffondant-Icing, the director of a company which is an existing client of Tricky Sums. He had been talking to a Tricky Sums partner about investments while they were playing golf together; AND b. Micky Tricky, a relative of one of the senior partners of Tricky Sums. He had been talking to that senior partner over a bottle of champagne at a family wedding; AND C. 'Knot Boring', who had asked a question about pensions on an online blog and received a reply from a Tricky Sums junior partner who had been reading the blog and added a comment. 10 Let us assume that VIT Student is appointed as the Data Analyst in a stock exchange. Write a CPP program to predict the stocks for this week based on the previous week rates for the following companies with static data members and static member functions along with other class members. Predicted stock price for TCS : 10% increase from previous week + 1% overall increase for this week Predicted stock price for WIPRO: 20% increase from previous week + 1% overall increase for this week Predicted stock price for ROLEX : 12% decrease from previous week + 1% overall increase for this week Get the relevant input values from the user and perform the calculations. Write the input and output of the program in the answer paper in addition to the program c) Let us assume VIT student is appointed as a Security Analyst in MCAFEE (a security company) Write a CPP program to calculate the number of attacks occurred 10 in the following domains with static data members and static member functions along with other class members. Number of attacks to HR department : Number of firewall- bypassed attacks + Number of detection-bypassed attacks + 100 new attacks Number of attacks to Technology department : Number of software-bypassed attacks + Number of intrusion-bypassed attacks + 100 new attacks Number of attacks to testing department : Number of testcase- bypassed attacks + Number of vulnerabilities-bypassed attacks + 100 new attacks Get the relevant input values from the user and perform the calculations. Write the input and output of the program in the answer paper in addition to the program Generator Contract Management (20) A generator has 100MWh generation capacity and has the following production cost curve C(q)=200+20q+0.1q^2It enters the operating day with the following contracts: - Seller of a forward contract of 30$/MWh and a quantity of 10MWh; - Seller of a forward contract of 50$/MWh and a quantity of 5MWh; - Buyer of a forward contract of 25$/MWh and a quantity of 5MWh; - A 5MWh put option with 28$/MWh exercise price, the option fee is $100. - A 10MWh call option with 30$/MWh exercise price, the option fee is $50. - A 5MWh call option with 35$/MWh exercise price, the option fee is $50. Calculate the generator output power and option exercises to maximize its profit if (assume the generator cannot be shut down) 1. The spot market price is $22/MWh;(10) 2. The spot market price is $33/MWh. (10) P paid their car lease payment for 12 months in the current year totaling $11,400 including 13% HST. O is required to use the car for employment and to pay her own car expenses. She estimates that the car is used 60% for employment purposes. What is the maximum deduction from employment income for tax purposes available to P for the current year? Calculate the change in pH that occurs when 1.30 mmol of a strong acid is added to 100.mL of the solutions listed below. K a(CH 3COOH)=1.7510 5. a. 0.0650MCH 3COOH+0.0650M CH 3COONa. Change in pH= b. 0.650MCH 3COOH+0.650M CH 3COONa. Change in pH= A tennis ball is thrown vertically upwards at 29 m/sec from a height of 80 m above the ground. Determine the time it takes (in sec) for the tennis ball to hit the ground. (Use g = 9.8 m/s^2) Istelevision viewing among children between the range of 2 to 6 forprechool education programs harmful for children's cognitivedecelopment? them of the songbird flute by Eileen silvers A truck of capacity 6 m is being used to collect the solid waste from a residential area. The normal working time in a day is 8 h, out of which the truck needs to spend 2 h/trip for travel from coll (0)Python - Complete the program below, following the instructions in the comments, so that it produces the sample outputs at the bottom###############################################def main():listOfNums = []print("Please enter some integers, one per line. Enter any word starting with 'q' to quit")# WRITE YOUR CODE HERE. DO NOT CHANGE THE NEXT 5 LINES.print("You entered:")print(listOfNums)doubleEvenElements(listOfNums)print("After doubling the even-numbered elements:")print(listOfNums)def doubleEvenElements(numbers):'''This function changes the list "numbers" by doubling each element withan even index. So numbers[0], numbers[2], etc. are multiplied times 2.'''# WRITE YOUR CODE HERE. DO NOT CHANGE THE LAST 5 LINES OF THE MAIN FUNCTION, NOR THE ABOVE FUNCTION HEADERmain()###################################################### A straight wire carrying a current of 10.0 A is in proximity to another wire carrying a current of 3.0 A. The current is flowing in the same direction (ie Up for each). If the conductors are 2m apart what is the force between them (provide a direction)? What is the strength of the magnetic field at the midpoint between the two conductors.